微积分基础复习

复习用书:《同济高等数学》第五版

第一章 函数与极限
  • 集合:具有某种特定性质的事物的总统,其中的元素简称元
  • 常用集合:全体正整数N, 全体整数Z,全体有理数Q,全体实数R
  • 领域:以点a为中心的任何开区间称为a的邻域,记为U(a)
  • 基本初等函数:包括 幂函数,指数函数,对数函数,三角函数,反三角函数
  • 数列极限: x n x_n xn为数列,
    ∃ a , ∀ ϵ , ∃ N , n > N → ∣ x n − a ∣ < ϵ \exist a,\forall\epsilon,\exist N, n>N\rightarrow|x_n-a|<\epsilon a,ϵ,N,n>Nxna<ϵ
  • 数列收敛性质:极限唯一,有界,保号
  • 若数列收敛,则它任一子数列也收敛
  • 函数极限: f ( x ) f(x) f(x)为函数,
    ∃ A , ∀ ϵ , ∃ δ , 0 < ∣ x − x 0 ∣ < δ → ∣ f ( x ) − A ∣ < ϵ \exist A,\forall \epsilon,\exist \delta,0<|x-x_0|<\delta\rightarrow|f(x)-A|<\epsilon A,ϵ,δ,0<xx0<δf(x)A<ϵ
  • 夹逼定理
  • 单调有界数列必有极限
  • 柯西存在定理:数列 x n x_n xn
    ∀ ϵ , ∃ N , m > N ∧ n > N → ∣ x n − x m ∣ < ϵ \forall \epsilon,\exist N, m>N \wedge n>N\rightarrow |x_n-x_m|<\epsilon ϵ,N,m>Nn>Nxnxm<ϵ
  • 反函数的单调性和原函数一致
  • 有界与最值:闭区间上连续函数一定能取得最大值和最小值
  • 零点定理:设 f ( x ) f(x) f(x)在[a,b]是连续且 f ( a ) ⋅ f ( b ) < 0 f(a)\cdot f(b)<0 f(a)f(b)<0, 则(a,b)至少存在一个零点
  • 介值定理
  • 函数一致连续:函数 f ( x ) f(x) f(x)
    ∀ ϵ , ∃ δ > 0 , ∀ x 1 ∀ x 2 , ∣ x 1 − x 2 ∣ < δ → ∣ f ( x 1 ) − f ( x 2 ) ∣ < ϵ \forall \epsilon, \exist \delta>0, \forall x_1\forall x_2,|x_1-x_2|<\delta\rightarrow |f(x_1)-f(x_2)|<\epsilon ϵ,δ>0,x1x2,x1x2<δf(x1)f(x2)<ϵ
  • 一致连续则连续,连续不一定一致连续。如果在闭区间上连续则一致连续
第二章 导数与微分
  • 可导必连续,连续不一定可导
  • 函数求导法则:
    ( u + v ) ′ = u ′ + v ′ (u+v)' = u'+v' (u+v)=u+v
    ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv
    ( u v ) ′ = u ′ v − u v ′ v 2 (\frac{u}{v})' = \frac{u'v-uv'}{v^2} (vu)=v2uvuv
  • 微分 d y = A Δ x dy=A\Delta x dy=AΔx定义为y相应于自变量增量 Δ x \Delta x Δx的微分
第三章 微分中值定理与导数的应用
  • 罗尔定理:区间(a,b)连续可导,且端点函数值相等,则区间存在导数为0 的点。
  • 拉格朗日中值定理:区间(a,b)连续可导,则存在一点 ξ \xi ξ,满足 f ( b ) − f ( a ) = f ( ξ ) ′ ( b − a ) f(b)-f(a)=f(\xi)'(b-a) f(b)f(a)=f(ξ)(ba)
  • 柯西中值定理: f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) \frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f'(\xi)}{F'(\xi)} F(b)F(a)f(b)f(a)=F(ξ)f(ξ)
  • 洛必达法则: lim ⁡ x → a f ( x ) F ( x ) = lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim_{x\rightarrow a}\frac{f(x)}{F(x)}=\lim_{x\rightarrow a}\frac{f'(x)}{F'(x)} limxaF(x)f(x)=limxaF(x)f(x)
  • 泰勒展开式: f ( x ) = f ( x 0 ) + ∑ k = 1 n f k ( x 0 ) k ! ( x − x 0 ) k + f n + 1 ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x)=f(x_0)+\sum_{k=1}^n\frac{f^{k}(x_0)}{k!}(x-x_0)^k+\frac{f^{n+1}(\xi)}{(n+1)!}(x-x_0)^{n+1} f(x)=f(x0)+k=1nk!fk(x0)(xx0)k+(n+1)!fn+1(ξ)(xx0)n+1
第四章 不定积分
  • 连续函数一定有原函数
  • 分部积分: ∫ u d v = u v − ∫ v d u \int udv=uv-\int vdu udv=uvvdu
  • 有理式积分: 拆成 一系列简单的有理式
第五章 定积分
  • 积分中值定理: ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) , a ≤ ξ ≤ b \int_a^b f(x)dx=f(\xi)(b-a),a\le\xi\le b abf(x)dx=f(ξ)(ba),aξb
  • 牛顿莱布尼兹公式: ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_a^b f(x)dx = F(b)-F(a) abf(x)dx=F(b)F(a). F ( ⋅ ) F(\cdot) F() f ( ⋅ ) f(\cdot) f()的原函数
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值