CNN中特征融合的一些策略

Introduction

特征融合的方法很多.如果数学化地表示,大体可以分为以下几种:

  • X + Y \textbf{X}+\textbf{Y} X+Y: X \textbf{X} X Y \textbf{Y} Y表示两个特征图, + + +表示元素级相加. 代表如ResNet、FPN
  • X    c o n c a t    Y \textbf{X} \; concat\;\textbf{Y} XconcatY . c o n c a t concat concat表示张量 拼接操作。 代表如GoogleNet、U-Net
  • X + G(X) ⋅ X \textbf{X}+\textbf{G(X)}\cdot\textbf{X} X+G(X)X. G ( ⋅ ) \textbf{G}(\cdot) G()是注意力函数。这里表示自注意力机制。代表如SENet、 CBAM、Non-local
  • G(Y) ⋅ X + Y \textbf{G(Y)}\cdot\textbf{X}+\textbf{Y} G(Y)X+Y. 同样是将注意力机制作用在一个特征图上,而权重信息来源于对方。代表如GAU
  • G(X) ⋅ X + ( 1 − G(X) ) ⋅ Y \textbf{G(X)}\cdot\textbf{X}+(1-\textbf{G(X)})\cdot\textbf{Y} G(X)X+(1G(X))Y. 软注意力机制的一种,对特征图进行加权平均。代表如HighwayNetworks
  • G ( X , Y ) ⋅ X + Y \textbf{G}(\textbf{X},\textbf{Y})\cdot\textbf{X}+\textbf{Y} G(X,Y)X+Y. 代表如SA
  • G ( X , Y ) ⋅ X + ( 1 − G ( X , Y ) ) ⋅ Y \textbf{G}(\textbf{X},\textbf{Y})\cdot\textbf{X}+(1-\textbf{G}(\textbf{X},\textbf{Y}))\cdot\textbf{Y} G(X,Y)X+(1G(X,Y))Y,代表如SKNet

X+Y

ResNet

X concat Y

GoogleNet

X+G(Y)Y

SENet[1]

SENet使用了通道注意力的模块。
在这里插入图片描述

给定特征图 X ∈ R C × H × W X\in \mathbb{R}^{C\times H\times W} XRC×H×W。通道注意力模块中的权重 w ∈ R C × 1 × 1 w\in \mathbb{R}^{C\times 1 \times 1} wRC×1×1可表示为:
w = σ ( B ( W 2 δ ( B ( W 1 ( g ( X ) ) ) ) ) ) w =\sigma(B(W_2\delta(B(W_1(g(X)))))) w=σ(B(W2δ(B(W1(g(X))))))
其中, g ( X ) = 1 H × W ∑ i = 1 H ∑ j = 1 W X [ : , i , j ] , g ( X ) ∈ R C g(X)=\frac{1}{H\times W}\sum_{i=1}^{H}\sum_{j=1}^WX_{[:,i,j]},g(X)\in \mathbb{R}^C g(X)=H×W1i=1Hj=1WX[:,i,j],g(X)RC是全局池化层, B B B是BN层, δ \delta δ是ReLU层, W W W是全连接层, W 1 ∈ R C r × C , W 2 ∈ R C × C r W_1\in \mathbb{R}^{\frac{C}{r}\times C},W_2\in \mathbb{R}^{C\times \frac{C}{r}} W1RrC×C,W2RC×rC,r是通道缩减倍数。

CBAM[2]

SE模块将特征图中所有位置的权重浓缩为一个实数值,忽略了不同位置间的差异,且更容易关注大目标而忽略小目标。 CBAM(Convolutional Block Attention Module)在通道注意力之后又加上了空间注意力。
在这里插入图片描述
这里仅介绍空间注意力模块。空间注意力是以通道为单位进行最大和平均池化,并将两者的结果进行concat,之后再一个卷积降成1wh的特征图空间权重,再将该权重和输入特征进行点积。
权重 w ∈ R 1 × H × W w\in \mathbb{R}^{1\times H\times W} wR1×H×W的数学表达形式为:
w = σ ( W ( [ F a v g c ( X ) ] ; F m a x c ( X ) ] ) ) w=\sigma(W([F_{avg}^c(X)];F_{max}^c(X)])) w=σ(W([Favgc(X)];Fmaxc(X)]))
其中 F a v g c F_{avg}^c Favgc是通道上的平均池化, F m a x c F_{max}^c Fmaxc是通道上的最大池化, W W W是卷积层。

Non-local[3]

Non-local是为视频分类设计的一个模块,去掉时间维度也可应用到2D图像上。CBAM用卷积生成点的权重值,视野狭窄。而Non-local能捕获全局信息。
在这里插入图片描述
图中的乘号表示矩阵相乘。先使用3个1x1x1卷积压缩特征图,其中 θ \theta θ ϕ \phi ϕ分支用来计算每个点与其它所有点的相关系数,用softmax归一化为权重,乘以 g g g分支得到拥有全局信息的结果,然后用1x1x1卷积恢复通道数。为了方便插入任何一个网络,将其作为一个residual分支。
同样是对全局信息建模,Non-local相较于全连接层少了很多参数,其核心的计算点与点之间相关系数的部分甚至不需要参数。不过仍然存在计算时间长的问题。

G(Y)X+Y

GAU[4]

PAN是一个为图像分割设计的网络,其使用的GAU(Global Attention Upsample)模块,如下图所示
在这里插入图片描述
GAU出现在网络的decoder部分。其中Y是高层特征图,X是底层特征图。高层特征采用了Global Pooling得到权重,底层特征经过一个卷积层实现与高层特征相同数量的map,乘以权重后再和高层相加。
作者认为,decoder部分主要任务是恢复目标类别的像素位置,而高层特征含有丰富的类别信息能够指导底层特征。

G(X)X+(1-G(X))Y

Highway Networks[5]

Highway Network是2015年提出来的,时间上早于ResNet。想要解决的问题就是如何训练深度网络。其解决方案是基于LSTM的门控机制。特征融合公式可表示为:
H ( x ) ⋅ T ( x ) + x ⋅ ( 1 − T ( x ) ) H(x)\cdot T(x)+x\cdot (1-T(x)) H(x)T(x)+x(1T(x))
它和residual模块比较相似:
H ( x ) ⋅ T ( x ) + x ⋅ ( 1 − T ( x ) ) = ( H ( x ) − x ) ⋅ T ( x ) + x = F ( x ) + x H(x)\cdot T(x)+x\cdot (1-T(x)) = (H(x)-x)\cdot T(x) + x = F(x) + x H(x)T(x)+x(1T(x))=(H(x)x)T(x)+x=F(x)+x
下图体现了二者结构上的差别。图a是residual模块,图c是Highway
在这里插入图片描述

G(X,Y)X+(1-G(X,Y))Y

SKNet[6]

SK(Selective kernel )模块的作用是自适应调整感受野。
在这里插入图片描述
模块分为三个部分。Split部分 分别经过3x3卷积和5x5卷积,产生不同感受野的特征图,可看作X和Y。Fuse部分和SE模块类似,区别是最后恢复成两个不同的通道权重。Select部分将X和Y的权重做个Softmax然后加权融合。
由于SK模块的加入提高了模型的复杂度,为了降低参数量作者使用了分组卷积,以及用3x3的带孔卷积替换5x5卷积。

Remarks

  • 公式的 Y \textbf{Y} Y可以表示成 f ( X ) f(\textbf{X}) f(X) f ( g − 1 ( X ) ) f(g^{-1}(\textbf{X})) f(g1(X)), f f f g g g表示一系列CNN操作。意思是 Y \textbf{Y} Y要么直接来源于 X \textbf{X} X,如ResNet, 要么和 X \textbf{X} X有共同的祖先,如GoogleNet。反之亦可。
  • 公式中只体现了两个特征图的融合,可拓展至多个特征图,如DenseNet。
  • G ( ⋅ ) \textbf{G}(\cdot) G()相较于普通的网络层多了元素点乘的操作,在Non-local中还多了矩阵相乘操作。其具体提取的信息也不同,比如通道、空间、时序、全局、局部等,抑或是它们之间的排列组合,篇幅有限相关的算法不一一写出。

Reference

  1. Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
  2. Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.
  3. Wang X, Girshick R, Gupta A, et al. Non-local neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7794-7803.
  4. Li H, Xiong P, An J, et al. Pyramid attention network for semantic segmentation[J]. arXiv preprint arXiv:1805.10180, 2018.
  5. Srivastava R K, Greff K, Schmidhuber J. Training very deep networks[C]//Advances in neural information processing systems. 2015: 2377-2385.
  6. Li X, Wang W, Hu X, et al. Selective kernel networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2019: 510-519.
### 卷积神经网络 (CNN) 中的特征融合技术实现方法 卷积神经网络 (Convolutional Neural Network, CNN) 是一种专门设计用于处理具有网格状拓扑数据的深度学习模型,广泛应用于图像分类、目标检测等领域。在实际应用中,为了提升模型性能,通常会采用多种 **特征融合** 的策略来增强不同层次特征之间的交互作用。 #### 1. 特征融合的方式概述 常见的特征融合方式可以分为以下几类: - **串联(Concatenation)**: 将来自多个分支或层的特征图按通道维度拼接在一起[^2]。这种方式能够保留原始特征的信息量,适用于多尺度或多模态输入场景。 - **加法(Addition)**: 对应位置上的特征值相加以完成融合操作。此方法简单高效,在残差网络(ResNet)中有广泛应用。 - **乘法(Multiplication / Attention)**: 利用逐元素乘法或者引入注意力机制调整各部分的重要性权重后再进行组合。这种方法有助于突出重要区域并抑制无关噪声干扰。 - **全局池化(Global Pooling)**: 针对整幅图片计算平均值或最大值得到固定长度向量表示形式之后再与其他高层抽象概念相结合形成最终表达结果。 - **特征金字塔网络(Feature Pyramid Networks, FPN)**: 主要解决目标检测任务中存在的大小差异显著的目标问题,通过构建一个多级联结构使得低分辨率大感受野信息与高分辨率小感受野细节相互补充支持从而达到更好的定位精度以及类别判断准确性目的。 - **跨模态融合(Cross-Modal Fusion)**: 当面对不同类型的数据源比如视觉信号加上语音音频序列时,则需要考虑如何有效综合这些异构特性以便于后续分析推理过程顺利开展下去。 - **自注意力机制(Self-Attention Mechanism)**: 让每一个像素点不仅关注自己周围的局部邻域情况同时也考虑到更远距离之外可能存在的关联关系进而动态调节权衡比例分配资源利用效率最大化原则下做出最优决策方案选择之一。 #### 2. 实现代码示例 以下是基于 PyTorch 框架的一个简单的特征融合例子——使用加法方式进行两路特征的融合: ```python import torch.nn as nn class AdditiveFusion(nn.Module): def __init__(self): super(AdditiveFusion, self).__init__() def forward(self, feature_map_1, feature_map_2): fused_feature = feature_map_1 + feature_map_2 return fused_feature ``` 如果想尝试 concat 方式的特征融合,可参考下面这段代码片段: ```python import torch import torch.nn as nn class ConcatenativeFusion(nn.Module): def __init__(self): super(ConcatenativeFusion, self).__init__() def forward(self, feature_map_1, feature_map_2): concatenated_features = torch.cat((feature_map_1, feature_map_2), dim=1) return concatenated_features ``` #### 3. 总结 不同的应用场景适合选用特定类型的特征融合手段。例如对于单目深度估计这类密集预测型题目来说可能会倾向于采用 attention-based 或者 multi-scale aggregation 类型的方法;而如果是涉及到视频动作理解的话则更多地依赖 temporal modeling 和 cross-modal interaction 这样的高级技巧。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值