keras动态调整学习率

本文介绍如何在Keras中根据epoch和损失(loss)的变化动态调整学习率,通过运用Callback机制和ReduceLROnPlateau回调函数实现这一目标。
摘要由CSDN通过智能技术生成

keras随着epoch及loss变化情况动态调整学习率,主要利用Callback, ReduceLROnPlateau来实现

import keras.backend as K

from keras.callbacks import Callback, TensorBoard, ReduceLROnPlateau, ModelCheckpoint



class LrReducer(Callback):

  def __init__(self, base_lr = 0.01, max_epoch = 150, power=0.9, verbose=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值