极差标准化算法详解

本文详细介绍了极差标准化的概念及其在经济统计分析中的应用,通过最大值与最小值之差来衡量数据的离散程度。极差标准化是一种处理正负指标的有效方法,虽然计算简单,但在反映变量分布上存在局限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

是经济统计分析中对正负指标标准化的一种处理方法。

             极差标准化变化即为:

                                

极差又称范围误差或全距,以R表示,是用来表示统计资料中的变异量数,其最大值与最小值之间的差距,即最大值减最小值后所得之数据。

             它是标志值变动的最大范围,它是测定标志变动的最简单的指标。

                

    

扩展资料


极差又称范围误差或全距(Range),以R表示,是用来表示统计资料中的变异量数(measures of variation),其最大值与最小值之间的差距,即最大值减最小值后所得之数据。 

它是标志值变动的最大范围,它是测定标志变动的最简单的指标。移动极差(Moving Range)是其中的一种。极差不能用作比较,单位不同 ,方差能用作比较, 因为都是个比率。

最直接也是最简单的方法,即最大值-最小值(也就是极差)来评价一组数据的离散度。这一方法在日常生活中最为常见,比如比赛中去掉最高最低分就是极差的具体应用。极差=最大标志值—最小标志值。

R=xmax-xmin

(其中,xmax为最大值,xmin为最小值)

例如 : 

这组数的极差就是 :-=9
它的优点是计算简单,含义直观,运用方便,故在数据统计处理中仍有着相当广泛的应用。 但是,它仅仅取决于两个极端值的水平,不能反映其间的变量分布情况,同时易受极端值的影响。

 

应用

在统计中常用极差来刻画一组数据的离散程度,以及反映的是变量分布的变异范围和离散幅度,在总体中任何两个单位的标准值之差都不能超过极差。同时,它能体现一组数据波动的范围。极差越大,离散程度越大,反之,离散程度越小。  

极差只指明了测定值的最大离散范围,而未能利用全部测量值的信息,不能细致地反映测量值彼此相符合的程度,极差是总体标准偏差的有偏估计值,当乘以校正系数之后,可以作为总体标准偏差的无偏估计值,

它的优点是计算简单,含义直观,运用方便,故在数据统计处理中仍有着相当广泛的应用。 但是,它仅仅取决于两个极端值的水平,不能反映其间的变量分布情况,同时易受极端值的影响。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值