ArcGIS新手之数据标准化

公式以及相关定义

数据标准化,也称为归一化,是一种将数据从原始范围转换到特定范围或分布的技术。这种转换有助于消除不同量纲或量级对数据分析的影响,使得不同特征之间的比较更为合理。
对分析指标进行极差标准化的公式如下
在这里插入图片描述
在这里插入图片描述
本文有两种数据标准化的方式,一种是文本式的标准化,另一种是ARCGIS栅格计算器的标准化的方式。

文本数据标准化过程展示

以地区社会弱势性空间格局分析的实例来展示指标的极差标准化。
打开表格,为了以防万一数据在标准化的过程中出现错误而致使数据错误、丢失的情况,这里在此新建了一个表,表命名为标准化,在新的表中进行标准化处理。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

将社会弱势性指标的内容复制到标准化的内容,以下提供两种操作方式针对不熟悉表格的同学进行参考。
1.鼠标可以单击社会弱势性指标表的数据表中第一个格子后,先按键盘上的ctrl,再按A。即可选中所有内容,选中后,先按键盘上的ctrl,再按C,回到标准化表格中,鼠标单击第一个格子,先按键盘上的ctrl,再按V。
2.鼠标可以单击社会弱势性指标表的数据表中第一个格子后,同时按键盘上ctrl和shift,再按>(向右健),选中第一行后,再按向下健,即可选中所有内容,先按键盘上的ctrl,再按C,回到标准化表格中,鼠标单击第一个格子,先按键盘上的ctrl,再按V。
结果如下
在这里插入图片描述
接下来,冻结首行,目的是方便观察和处理数据
在这里插入图片描述
现在开始有针对性的区分正负指标,根据公式计算其指标的最大最小值
在这里插入图片描述
计算指标里的最大值,结果如下
在这里插入图片描述
计算指标中的最小值,结果如下
在这里插入图片描述
最后将光标放在表格的右下方,出现黑色十字光标后,鼠标左键长按,拖住鼠标,移动至最后一个指标为止,由此,每一个指标的最大最小值计算完毕,结果如图所示
在这里插入图片描述
接下来为了更好的区分,我们新建了一个表格,命名为标准化结果,复制社会弱势性指标内容的前两列和第一行,到标准化结果表中,根据标准化公式进行计算,最后将光标放在表格的右下方,出现黑色十字光标后,鼠标左键长按,拖住鼠标,移动至最后一列,或者出现黑色十字光标后直接双击,下图展示的是负向指标计算的结果。
计算公式按图中顺序依次是
=(标准化!C$74-标准化!C2)/(标准化!C$74-标准化!C$75)
=(标准化!D$74-标准化!D2)/(标准化!D$74-标准化!D$75)
=(标准化!G$74-标准化!G2)/(标准化!G$74-标准化!G$75)
=(标准化!H$74-标准化!H2)/(标准化!H$74-标准化!H$75)
在这里插入图片描述
同理,接下来,按照正向指标计算公式,图中标黄的区域为上图的负向指标,结果如下图所示。
计算公式按图中顺序依次是
=(标准化!E2-标准化!E$75)/(标准化!E$74-标准化!E$75)
=(标准化!F2-标准化!F$75)/(标准化!F$74-标准化!F$75)
=(标准化!I2-标准化!I$75)/(标准化!I$74-标准化!I$75)
=(标准化!J2-标准化!J$75)/(标准化!J$74-标准化!J$75)
=(标准化!K2-标准化!K$75)/(标准化!K$74-标准化!K$75)
=(标准化!L2-标准化!L$75)/(标准化!L$74-标准化!L$75)
=(标准化!M2-标准化!M$75)/(标准化!M$74-标准化!M$75)
=(标准化!N2-标准化!N$75)/(标准化!N$74-标准化!N$75)
=(标准化!O2-标准化!O$75)/(标准化!O$74-标准化!O$75)
=(标准化!P2-标准化!P$75)/(标准化!P$74-标准化!P$75)
=(标准化!Q2-标准化!Q$75)/(标准化!Q$74-标准化!Q$75)
=(标准化!R2-标准化!R$75)/(标准化!R$74-标准化!R$75)
在这里插入图片描述
最后,避免不必要的混乱,再建立一个新的表名为标准化结果(数值),将数据复制到新的表中,记得要选择性粘贴。结果如下所示在这里插入图片描述

ARCGIS软件辅助数据标准化过程

标准化的过程我们借助dem数据进行展示,这是第一种方法,借助栅格计算器,用公式带入数值计算,本文把dem数据用作正向指标计算
(1)打开搜索工具,输入栅格计算器
(2)打开栅格计算器,将相应的公式代入数值
(3)保存时注意要用英文命名可以减少错误出现的概率
(4)公式:Float((“dem_gx” + 100)) / (2107 + 100)
在这里插入图片描述
第二种方法借助模糊分类进行处理得到标准化结果,过程如图所示
在这里插入图片描述
结果展示
在这里插入图片描述

本文小结

本文根据两种数据类型进行数据标准化,无论是何种类型哪种方式,数据标准化的结果会使得不同数据呈现出0-1的结果,若出现超出0-1的范围,那么便是数据计算出错,计算者需要返回看到底是哪个环节出了差错。本文用于回顾学习,文章若出现缺少和错误之处,欢迎大家在评论区留言,补充说明,纠正错误,互相学习交流,在此共勉。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值