Count a*b 数论推公式+求因子平方和

f ( x ) = ∑ a = 0 x − 1 ∑ b = 0 x − 1 [ x ∤ a b ] f(x)=\sum_{a=0}^{x-1}\sum_{b = 0}^{x-1}[x\nmid ab] f(x)=a=0x1b=0x1[xab]
g ( x ) = ∑ d ∣ x f ( d ) g(x) =\sum_{d\mid x}{f(d)} g(x)=dxf(d)
g ( n ) % 2 64 g(n)\%2^{64} g(n)%264 T T T组询问, T ≤ 20000 T\le 20000 T20000, n ≤ 2 ∗ 1 0 9 n \le 2*10^9 n2109

解法:

f ( x ) = ∑ a = 1 x ∑ b = 1 x [ x ∤ a b ] f(x) =\sum_{a=1}^{x}\sum_{b = 1}^{x}[x\nmid ab] f(x)=a=1xb=1x[xab]
容斥得到,
= x 2 − ∑ a = 1 x ∑ b = 1 x [ x ∣ a b ] =x^2-\sum_{a=1}^{x}\sum_{b = 1}^{x}[x\mid ab] =x2a=1xb=1x[xab]
a,x同时除去最大公因子得,
= x 2 − ∑ a = 1 x ∑ b = 1 x [ x g c d ( a , x ) ∣ a b g c d ( a , x ) ] =x^2-\sum_{a=1}^{x}\sum_{b = 1}^{x}[\frac{x}{gcd(a,x)}\mid \frac{ab}{gcd(a,x)}] =x2a=1xb=1x[gcd(a,x)xgcd(a,x)ab]
a g c d ( a , x ) \frac{a}{gcd(a,x)} gcd(a,x)a肯定和 x g c d ( a , x ) \frac{x}{gcd(a,x)} gcd(a,x)x互质,所以,
= x 2 − ∑ a = 1 x ∑ b = 1 x [ x g c d ( a , x ) ∣ b ] =x^2-\sum_{a=1}^{x}\sum_{b = 1}^{x}[\frac{x}{gcd(a,x)}\mid b] =x2a=1xb=1x[gcd(a,x)xb]
∑ b = 1 x [ x g c d ( a , x ) ∣ b ] \sum_{b = 1}^{x}[\frac{x}{gcd(a,x)}\mid b] b=1x[gcd(a,x)xb]其实求1到x有多少个数被 x g c d ( a , x ) \frac{x}{gcd(a,x)} gcd(a,x)x整除,所以,
= x 2 − ∑ a = 1 x x x g c d ( a , x ) =x^2-\sum_{a=1}^{x}\frac{x}{\frac{x}{gcd(a,x)}} =x2a=1xgcd(a,x)xx
= x 2 − ∑ a = 1 x g c d ( a , x ) =x^2-\sum_{a=1}^{x}gcd(a,x) =x2a=1xgcd(a,x)
换枚举方式,枚举x的所有因子d
= x 2 − ∑ d ∣ x d ∑ a = 1 x [ g c d ( a , x ) = = d ] =x^2-\sum_{d\mid x}d\sum_{a=1}^{x}[gcd(a,x)==d] =x2dxda=1x[gcd(a,x)==d]
= x 2 − ∑ d ∣ x d ∑ a = 1 x d [ g c d ( a , x d ) = = 1 ] =x^2-\sum_{d\mid x}d\sum_{a=1}^{\frac{x}{d}}[gcd(a,\frac{x}{d})==1] =x2dxda=1dx[gcd(a,dx)==1]
引用欧拉函数的定义 φ ( x ) \varphi(x) φ(x)
f ( x ) = x 2 − ∑ d ∣ x d ∗ φ ( x d ) f(x)=x^2-\sum_{d\mid x}{d*\varphi(\frac{x}{d})} f(x)=x2dxdφ(dx)
带入 g ( n ) g(n) g(n),
g ( n ) = ∑ x ∣ n x 2 − ∑ x ∣ n ∑ d ∣ x d ∗ φ ( x d ) g(n) = \sum_{x\mid n}x^2-\sum_{x|n}\sum_{d|x}d*\varphi(\frac{x}{d}) g(n)=xnx2xndxdφ(dx)
T = x d T=\frac{x}{d} T=dx,
g ( n ) = ∑ x ∣ n x 2 − ∑ d T ∣ n ∑ d ∣ n d ∗ φ ( T ) g(n) = \sum_{x\mid n}x^2-\sum_{dT|n}\sum_{d|n}d*\varphi(T) g(n)=xnx2dTndndφ(T)
= ∑ x ∣ n x 2 − ∑ T ∣ n d ∑ d ∣ n d ∗ φ ( T ) = \sum_{x\mid n}x^2-\sum_{T|\frac{n}{d}}\sum_{d|n}d*\varphi(T) =xnx2Tdndndφ(T)
= ∑ x ∣ n x 2 − ∑ d ∣ n d ∑ T ∣ n d φ ( T ) = \sum_{x\mid n}x^2-\sum_{d\mid n}d\sum_{T|\frac{n}{d}}\varphi(T) =xnx2dndTdnφ(T)
注意到 ∑ T ∣ n d φ ( T ) = n d \sum_{T|\frac{n}{d}}\varphi(T)=\frac{n}{d} Tdnφ(T)=dn
g ( n ) = ∑ x ∣ n x 2 − ∑ d ∣ n d ∗ n d = ∑ x ∣ n x 2 − ∑ d ∣ n n g(n) = \sum_{x\mid n}x^2-\sum_{d|n}d*\frac{_n}{^d}=\sum_{x\mid n}x^2-\sum_{d|n}n g(n)=xnx2dnddn=xnx2dnn
g ( n ) = ∑ d ∣ n x 2 − n g(n)=\sum_{d\mid n}x^2-n g(n)=dnx2n
这个式子是求n的所有因子的平方和减去所有因子的个数乘N的差,质因子分解后求就行。还有记得使用unsigned long long。

#include <iostream>
#include <cstdio>
#define ll long long
#define llu unsigned ll
using namespace std;

const int N = 1e5+10;

llu p[N], prime[N], m;
ll n;

void primes(int n){
	for(int i = 2; i <= n; i++){
		if(!p[i]) p[i] = i, prime[++m] = i;
		for(int j = 1; j <= m; j++){
			if(prime[j] > p[i] || prime[j] > n/i) break;
			p[i*prime[j]] = prime[j];
		}
	}
	//for(int i = 1; i <= m; i++) cout << prime[i] << endl;
}

int main(){
	primes(1e5);
	int t;
	scanf("%d", &t);
	while(t--){
		scanf("%lld", &n);
		llu ans1 = 1, ans2 = n;
		for(int i = 1; i <= m && prime[i] * prime[i]<= n; i++){
			if(n%prime[i] == 0){
				llu cnt = 1, tmp = 1, base = 1;
				while(n%prime[i] == 0){
					base *= prime[i];
					tmp += base*base;
					cnt++;
					n /= prime[i];
				}
				ans1 *= tmp;
				ans2 *= cnt;
				//123
			}
		}
		if(n > 1){
			ans1 *= n*n+1;
			ans2 *= 2;
		}
		printf("%llu\n", ans1-ans2);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值