基于R语言的影视评分影响因素实证分析(二)

使用R语言分析电影数据,研究电影评分与票房、类型、国产与否等因素的关系。结果显示,电影票房与评分正相关,电影类型数量多的评分较低,非国产电影评分高于国产电影,续集电影评分低于非续集电影。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  在某网站抓取了百条数据,试图通过对这些数据的分析,找出电影受欢迎的因素。本案例共获取100条数据。数据详情如下:

1.数据处理及变量描述

  首先对数据进行筛选处理,将不需要或者缺失变量进行剔除。
电影类型只保留第一个选项,即《唐人街探案2》的电影类型有喜剧,动作,犯罪,我们只选择第一个类型为主要电影类型。为了避免电影类型这一变量的失真,于是将电影类型重新分解出另一个变量为电影类型数量,即《红海行动》为战争类型电影,选择为1;《唐人街探案2》的电影类型有喜剧,动作,犯罪,选择为2,所以数值越大,其属于类型越多。
  制片国家取国产与非国产两个选择。
  各个变量的具体取值及描述如下。

  处理完的数据如下:

2.描述分析

2.1 变量描述性分析

  对进行描述性分析,结果如下表所示。

实证分析黄金价格影响因素通常包括收集相关变量数据、建立模型、进行回归分析等步骤。在R语言中,可以利用多种统计包来进行这样的分析。以下是一个简化版的R语言代码示例,用于分析可能影响黄金价格的因素: ```r # 安装并加载需要的包 install.packages("ggplot2") library(ggplot2) # 假设我们已经有了一个名为gold_data的数据框,其中包含了黄金价格和影响因素的数据 # gold_data <- read.csv("path_to_your_data.csv") # 查看数据的结构 str(gold_data) # 数据探索性分析,例如绘制黄金价格的分布图 ggplot(gold_data, aes(x=GoldPrice)) + geom_histogram(bins=30, fill="blue", color="black") + labs(title="黄金价格分布图", x="黄金价格", y="频数") # 假设影响因素包括美元指数(DollarIndex)、石油价格(OilPrice)和市场恐慌指数(VIX) # 我们使用多元线性回归来分析这些因素对黄金价格的影响 model <- lm(GoldPrice ~ DollarIndex + OilPrice + VIX, data=gold_data) # 查看回归模型的摘要信息 summary(model) # 检查回归诊断,例如残差分析、Q-Q图等 par(mfrow=c(2,2)) plot(model) ``` 需要注意的是,以上代码仅仅是一个框架示例,实际上黄金价格的影响因素可能更为复杂,并且需要更详尽的数据处理和分析步骤。在执行上述代码之前,必须确保数据集`gold_data`已经被正确加载到R环境中,并且包含所有需要的变量。此外,上述模型可能需要根据实际情况进行调整,如引入新的变量、使用不同的模型或者考虑变量之间的交互作用等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小徐老师_xiho

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值