【CCF】201312-4 有趣的数(DP)

本文探讨了一种使用动态规划解决有趣数计数问题的方法。有趣数的定义包括特定的数字排列规则,如所有0在1前,2在3前,且四位数字至少各出现一次。文章提供了一个高效的算法实现,用于计算n位有趣数的数量,并通过模运算处理大数问题。
摘要由CSDN通过智能技术生成

试题编号: 201312-4
试题名称: 有趣的数
时间限制: 1.0s
内存限制: 256.0MB
问题描述:
问题描述
  我们把一个数称为有趣的,当且仅当:
  1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次。
  2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前。
  3. 最高位数字不为0。
  因此,符合我们定义的最小的有趣的数是2013。除此以外,4位的有趣的数还有两个:2031和2301。
  请计算恰好有n位的有趣的数的个数。由于答案可能非常大,只需要输出答案除以1000000007的余数。
输入格式
  输入只有一行,包括恰好一个正整数n (4 ≤ n ≤ 1000)。
输出格式
  输出只有一行,包括恰好n 位的整数中有趣的数的个数除以1000000007的余数。
样例输入
4
样例输出
3

很有趣的一个动态规划题,找对转移方程(注意dp[][]要开成 long long的,要么30分,嘤)

#include <bits/stdc++.h>

using namespace std;
const int mod = 1000000007;
typedef long long ll;
const int N = 1e3 + 5;
int n;
ll dp[N][10]; //注意long long
int main()
{
    ll n;
    cin >> n;
    for (int i = 1; i <= n; i++)
    {
        dp[i][0] = 1;//0---0 1(2)3 ---首位只能放2 
        dp[i][1] = (dp[i - 1][0] + dp[i - 1][1] * 2) % mod;  //1---(0)1(2)3 --s[i-1][1]*2能放0或2 s[i-1][0]只能放0 
        dp[i][2] = (dp[i - 1][0] + dp[i - 1][2]) % mod;//2---01(2)(3) --s[i-1][2]只能放3, s[i-1][0]只能放3 
        dp[i][3] = (dp[i - 1][1] + dp[i - 1][3] * 2) % mod; //3---(0)(1)(2)3-- s[i-1][3]*2可以放2 1  s[i-1][1] 存在02只能放1 
        dp[i][4] = (dp[i - 1][1] + dp[i - 1][2] + dp[i - 1][4] * 2) % mod;//4---(0)1(2)(3)  1.可以放03 2.少0 3.少3 
        dp[i][5] = (dp[i - 1][3] + dp[i - 1][4] + dp[i - 1][5] * 2) % mod;//5---(0)(1)(2)(3) 1.可以放13 2.少1 3。少3 
    }
    cout << dp[n][5] << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值