《论文阅读》Multi-Path Region Mining For Weakly Supervised 3D Semantic Segmentation on Point Clouds

留个笔记自用

Multi-Path Region Mining For Weakly Supervised 3D Semantic Segmentation on Point Clouds

做什么

Instance segmentation实例分割
在这里插入图片描述
目标检测( Object detection)不仅需要提供图像中物体的类别,还需要提供物体的位置(bounding box)。语义分割( Semantic segmentation)需要预测出输入图像的每一个像素点属于哪一类的标签。实例分割( instance segmentation)在语义分割的基础上,还需要区分出同一类不同的个体。
在这里插入图片描述
这里就是从2D图像的分割转移到了点云上的分割,无非就是在位置信息上多了一维

做了什么

在这里插入图片描述
这里采用了弱监督的方法来预测点云级别的分割标签,将这个标签作为弱标签即常见的Pseudo Label
这里相比于常见的场景级标签(即比如2D图像中整张图属于某一类)这里采用的是子点云级标签,就是在空间中均匀放置一个种子点,种子点以r为半径构造一个球体,球体覆盖范围为子点云,并且每个种子点相互之间存在着覆盖部分,简单来说,对于种子点p的邻域定义为
在这里插入图片描述
这里的r是子点云的半径,q就是p的邻域点的集合

怎么做

这里采用的baseline是《Learning Deep Features for Discriminative Localization》里的CAM,做了一些些改进
在这里插入图片描述
在这之前,首先还是先大致理解一下整体结构
在这里插入图片描述
输入是一个点云(子点云)∈RN×3,然后输入一个feature extractor,这里使用的是带resnet块的KPConv
在这里插入图片描述
简单了解一下这个卷积。即对于卷积范围内的一点xi,首先求该点与卷积核内所有点的相关h,以h*Wk作为xi与卷积核第k个点的卷积结果,对K个卷积结果求和,即得到xi的卷积结果。这种想法跟今年的另外一篇感觉查不了多少
Convolution in the Cloud
于是这里就构建了这样的feature extractor,将输入提取出逐点特征
在这里插入图片描述
提取出卷积层得到的特征后,使用一个1×1卷积改变通道数,得到PCAM feature map,训练时加了一层gap和sigmoid得到weak label
在这里插入图片描述
在这之前得到的feature map(gap之前)标注为fcam(p)这里的p表示点p,对类别C,定义PCAM
在这里插入图片描述
wc是对c类的分类权重,yc是对c类的GT分类one-hot向量,因为点云中没有背景这种说法,所以对每点都要设置一个前景类,即
在这里插入图片描述
这就是点p的伪标签
这条路就是整体结构中的第一条分支
在这里插入图片描述
然后是结构的增强部分,多路径区域挖掘,简单来说就是使用各种注意机制从
网络中挖掘出更多有区别的区域,然后聚合在一起生成点级伪标签
这里是设计了三个attention方式,spatial attention空间注意力模块, channel attention通道关注模块,point-wise attention逐点注意力模块
在这里插入图片描述
每条路径后面都跟随一个1×1卷积作为分类器改变通道数,以生成单个PCAM,然后使用GAP生成各自不同注意力的特征向量
在这里插入图片描述
然后就是具体的模块介绍
首先是空间模块该模块有助于改善局部区别特征表示,这允许更精确的对象区域定位过程,简单来说就是常见的那一套——全局+局部(local+global)
在这里插入图片描述
这里的输入设置的是N×C的feature map,首先先是一个三分支,每个分支都先是一个1×1卷积调整通道数,然后C和B的转置矩阵元素相乘后和D相乘,然后按列进行softmax得到attention,然后再乘上D,最后再1×1卷积后加上原来的A。很显然这里的做法就是最原始的attention了。
在这里插入图片描述
在这里插入图片描述
这里的E就是attention map,G就是附加了attention的feature map,作用就是老attention作用了,对于每个点,来自其他点的所有特征的加权和被添加到局部特征,这选择性地将全局上下文增加到局部特征
在这里插入图片描述
然后是第二个模块,通道模块,这里是假设每个通道都可以表示为对特定类别的相应,然后就利用通道相关信息进行进一步的特征挖掘
在这里插入图片描述
这里的结构上跟空间注意力非常相似,但因为探索的直接是feature map的通道之间的关系,所以没有加1×1卷积来改变通道数,直接用的原生通道的特征来进行attention
在这里插入图片描述
在这里插入图片描述
其他做法和空间注意力类似
在这里插入图片描述
最后是逐点注意力
在这里插入图片描述
这里的意思就是说在空间注意力的前提下,改变了聚合方式,不是将attention特征和原特征相加,而是直接concat起来,这样就不仅仅结合了点周围的attention,还附带了点本身的信息
在这里插入图片描述
除上面之外,从每一条路径中提取像素点,并通过获取元素最大值来合并它们,并通过最近的上采样将PCAM上采样到原始大小
在这里插入图片描述
得到伪标签后使用dCRF对标签结果进行强化,这里的dCRF是denseCRF,至于具体是非常复杂的数学推导。。不太想去理解。作用大概就是强化也就是refine这里的pseudo label
然后作为label使用KPConv U-Net来进行训练得到最后的分割结果

总结

1.无监督点云分割第一篇,具有启发性,但这里的多个attention路径真的奇怪,明明这么相似无脑叠加真的会使效果变好吗,而且似乎也没有各自设计loss去限制它,只是假象能实现XX功能,虽然spatial、channel、point三路的设计方法值得学习
2.为了减少标注标签的难度,这里是转换成了标签子点云,我怎么感觉这样数据量反而更繁琐了呢。。那用无监督的意义在哪呢。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值