【点云识别】Multi-Path Region Mining ForWeakly Supervised 3D Semantic Segmentation on Point Clouds

本文探讨CVPR2020上一篇关于点云弱监督3D语义分割的论文,介绍其通过Scene-level和Subcloud-level标签进行分割的方法,使用pointclassactivationmap和MultiPathRegionMining模块增强特征提取,并通过CRF进行细化。该研究为点云无监督分割领域迈出重要一步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Multi-Path Region Mining ForWeakly Supervised 3D Semantic Segmentation on Point Clouds

本文介绍一篇cvpr2020里面关于点云弱监督分割的文章。
论文
目前还没有开源代码

1. 问题

目前获得大规模点云已经不是一件困难的事情了,但是对其进行标注是十分费时。
例如 ScanNet 数据集,对一个scan标注时间的中位数和平均数大概是16.8min和22.3min。

所以本文想要解决弱监督点云分割的问题。

2. 思想

在这里插入图片描述

通过Scene-level 和 Subcloud-level 的label完成点云的分割。

在这里插入图片描述
前端使用了point class activation map(PCAM)进行特征的提取,然后 Multi Path
Region Mining模块进行enhance,使用element-wise maximum 得到label。最后使用了一个CRF进行refine。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值