Multi-Path Region Mining ForWeakly Supervised 3D Semantic Segmentation on Point Clouds
本文介绍一篇cvpr2020里面关于点云弱监督分割的文章。
论文
目前还没有开源代码
1. 问题
目前获得大规模点云已经不是一件困难的事情了,但是对其进行标注是十分费时。
例如 ScanNet 数据集,对一个scan标注时间的中位数和平均数大概是16.8min和22.3min。
所以本文想要解决弱监督点云分割的问题。
2. 思想
通过Scene-level 和 Subcloud-level 的label完成点云的分割。
前端使用了point class activation map(PCAM)进行特征的提取,然后 Multi Path
Region Mining模块进行enhance,使用element-wise maximum 得到label。最后使用了一个CRF进行refine。