多元回归

这篇博客介绍了多元线性回归的基本概念,包括模型的基本假定、参数估计量的性质、回归方程的显著性检验。讨论了高斯-马尔可夫定理,强调了最小二乘估计的性质,并提到了F检验和t检验在检验模型有效性与回归系数显著性中的应用。此外,还探讨了拟合优度、中心化、标准化和相关系数在数据分析中的作用。
摘要由CSDN通过智能技术生成

多元回归

多元线性回归模型的基本假定

为了方便地进行模型的参数估计,我们对以下回归方程式有如下假定:

Y ^ = X β + ε \hat{Y}=X\beta+\varepsilon Y^=Xβ+ε

  1. 解释变量 x 1 , x 2 , ⋯ &ThinSpace; , x p x_1,x_2,\cdots,x_p x1,x2,,xp 是确定性变量,不是随机变量,且要求 r a n k ( X ) = p + 1 &lt; n rank(X)=p+1&lt;n rank(X)=p+1<n。这里的 r a n k ( X ) = p + 1 &lt; n rank(X)=p+1&lt;n rank(X)=p+1<n,表明设计矩阵 X X X中的自变量列之间不相关,样本量的个数应该大于解释变量的个数, X X X是以满秩矩阵。
  2. 随机误差项具有零均值等方差,即

{ E ( ε i ) = 0 , i = 1 , 2 , ⋯ &ThinSpace; , n c o v ( ε i , ε j ) = { σ 2 , i = j 0 , i ≠ j , i , j = 1 , 2 , ⋯ &ThinSpace; , n \begin{cases} E(\varepsilon_i)=0,\quad i =1,2,\cdots,n\\ cov(\varepsilon_i,\varepsilon_j)= \begin{cases} \sigma^2, &amp;{i = j} \\ 0, &amp; {i\neq j} \end{cases}\quad,i,j=1,2,\cdots,n \end{cases} E(εi)=0i=1,2,,ncov(εi,εj)={ σ2,0,i=ji̸=j,i,j=1,2,,n
这个假定常称为Gauss-Markov条件。 E ( ε i ) = 0 E(\varepsilon_i)=0 E(εi)=0,即假设观察值没有系统误差,随机误差项

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值