无监督学习与监督学习
1、 首先我们要知道什么是机器学习
a) 从我们的学习推导而来
举个例子 要考试了,老师给我们刷题,然后我们通过完成老师给的题目,考试考了100分,考试题不是原题,
但与原题十分相似
b) 我们总结一下
要考试了,老师给我们刷题(训练集),然后我们通过完成老师给的题目(训练),考试(要处理的问题)考了100
分,考试题不是原题,但与原题十分相似(要处理的问题与训练集的关系)
2、 下面我们来说监督学习
a) 先给出定义
定义:根据已有的数据集,知道输入和输出结果之间的关系。根据这种已知的关系,训练得到一个最优的模型。
b) 下面给出实际例子
你的邻居要卖房子,他查阅了很多周围已成交的房价,假定房价只与房子的大小有关,他希望你能告诉他,
他的房子能卖到多少钱
c) 分析例子
你的邻居要卖房子,他查阅了很多周围已成交的房价(训练集),假定房价只与房子的大小有关,他希望你能告诉他,
他的房子能卖到多少钱(要处理的问题)
所以,我们只差训练这一个过程
d) 训练方法
这里涉及到数学问题,所以不做赘述,常用的方法是拟合,拟合的方法也不做赘述(可以是梯度下
降,也可以是其他)
3、 下面我们来说无监督学习
a) 先给出定义
定义:我们不知道数据集中数据、特征之间的关系,而是要根据聚类或一定的模型得到数据之间的关
系。
b) 下面给出实际例子
在医院,有良性肿瘤和非良性肿瘤之分,他们分布有随大小有一定的规律
c) 分析例子
机器学习的任务就是估计该肿瘤的性质,是恶性的还是良性的。是判断某一类
d) 训练方法
聚类算法(这是个算法问题,不做赘述)
4、 下面我们可以通过对比2、3来区别无监督算法和监督算法了
a) 很难说它们的优劣,只是针对的问题不同
b) 训练集要求
监督学习必须要有精确的训练集与测试样本,而无监督学习只需要一组数据
c) 训练方法不同
比较而言,监督学习的训练方法更有难度
d) 他们针对的问题不同
一个针对连续,一个针对离散数据的分类
e) 结果的精确性
有监督学习的精确性比无监督高
–指导老师 赵旭剑
–本文章为机器学习第二次作业
–参考学习 B站吴恩达机器学习视频资料
–参考学习 文章 https://www.jianshu.com/p/682c88cee5a8