吴恩达《机器学习》课程笔记归纳(一)-- 初识机器学习

这篇博客是对吴恩达机器学习课程的笔记整理,介绍了机器学习的基本概念,包括Tom Mitchell的定义。接着详细讲解了监督学习,通过房价预测和乳腺癌分类的例子阐述了回归和分类问题。最后提到了无监督学习,特别是聚类算法在谷歌新闻等场景的应用。
摘要由CSDN通过智能技术生成

 

参考地址:https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes

1. 什么是机器学习

一个年代近一点的定义,由 Tom Mitchell 提出,来自卡内基梅隆大学,Tom 定义的机器学习是,一个好的学习问题定义如下,他说,一个程序被认为能从经验 E 中学习,解决任务 T,达到性能度量值 P,当且仅当,有了经验 E 后,经过 P 评判,程序在处理 T 时的性能有所提升。经验 E 就是程序上万次的自我练习的经验而任务 T 就是下棋。性能度量值 P 呢,就是它在与一些新的对手比赛时,赢得比赛的概率。

我们假设您的电子邮件程序会观察收到的邮件是否被你标记为垃圾邮件。在这种 Email 客户端中,你点击“垃圾邮件”按钮,报告某些 Email 为垃圾邮件,不会影响别的邮件。基于被标记为垃圾的邮件,您的电子邮件程序能更好地学习如何过滤垃圾邮件。请问,在这个设定中,任务 T 是什么?

2. 监督学习

我们用一个例子介绍什么是监督学习,把正式的定义放在后面介绍。

假如说你想预测房价。前阵子,一个学生从波特兰俄勒冈州的研究所收集了一些房价的数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值