Codeforces 1686B

题目描述

对于数组 [ b 1 , b 2 , … , b m ] [b_1,b_2,\dots,b_m] [b1,b2,,bm],定义逆序对的数目是所有满足条件 i ≤ i < j ≤ m i \le i \lt j \le m ii<jm b i > b j b_i>b_j bi>bj的整数对 ( i , j ) (i,j) (i,j)数目。如果这个数组的逆序对的数目是奇数,这个数组就是奇数组。

举个例子, [ 4 , 2 , 7 ] [4,2,7] [4,2,7]是奇数组,因为逆序对数目是 1 1 1 [ 2 , 1 , 4 , 3 ] [2,1,4,3] [2,1,4,3]不是奇数组,因为逆序对数目是 2 2 2

给定一个从 1 1 1 n n n的整数排列 [ p 1 , p 2 , . . . , p n ] [p_1,p_2,...,p_n] [p1,p2,...,pn]。你想把它分割成一个或多个连续的子数组,使得奇子数组的数目越多越好。

所以最大的奇子数组组数是几?

输入格式

输入的第一行包含第一个整数 t ( 1 ≤ t ≤ 1 0 5 ) t(1 \le t \le 10^5) t(1t105)表示测试数据的组数。测试数据的描述见下。

第一行包含一个整数 n ( 1 ≤ n ≤ 1 0 5 ) n(1 \le n \le 10^5) n(1n105)表示排列的大小。

第二行包含 n n n个整数 p 1 , p 2 , . . . , p n ( 1 ≤ p i ≤ n ) p_1,p_2,...,p_n (1 \le p_i \le n) p1,p2,...,pn(1pin),且每个 p i p_i pi不相等,表示排列的元素。

所有测试数据的 n n n之和不超过 2 ⋅ 1 0 5 2 \cdot 10 ^ 5 2105

输出格式

对所有测试数据输出一个单独的整数,表示通过将这个排列分割成多个连续子数组时的最大的可能的奇子数组的数目。

输入输出样例

输入输出
5
3
1 2 3
4
4 3 2 1
2
1 2
2
2 1
6
4 5 6 1 2 3
0
2
0
1
1

样例解释

第一个和第三个测试数据,无论我们如何分割排列都得不到奇数组。

第二个测试数据,我们可以将排列分割为 [ 4 , 3 ] [4,3] [4,3] [ 2 , 1 ] [2,1] [2,1],两个数组都是奇数组,因为它们的逆序对数都是 1 1 1

第四个测试数据,我们可以将排列“分割”为 [ 2 , 1 ] [2,1] [2,1],奇数组。

第五个测试数据,我们可以将排列分割为 [ 4 , 5 ] [4,5] [4,5] [ 6 , 1 , 2 , 3 ] [6,1,2,3] [6,1,2,3]。第一个子数组有 0 0 0个逆序对,第二个子数组有 3 3 3个逆序对,第二个子数组是奇数组。

题解

贪心。

往右遍历数组中所有的逆序对,在没有重复的前提下把所有逆序对分割成子数组。

代码如下:

#include <bits/stdc++.h>
using namespace std;
int a[100001];
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		int n,cnt=0;
		scanf("%d",&n);
		for(int i=1;i<=n;i++)
		scanf("%d",&a[i]);
		for(int i=1;i<=n-1;i++)
		{
			if(a[i]>a[i+1]) cnt++,i++;
		}
		printf("%d\n",cnt);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值