sklearn.metrics.make_scorer详解

官方说明文档:点这里
从性能指标或损失函数中创建一个记分标准。
这个函数封装了用于GridSearchCV和cross_val_score的评分函数,它接受一个评分函数,如accuracy_score、mean_squared_error、adjusted_rand_index或average_precision,并返回一个可调用的值,该值对学习器的输出进行评分。
它的使用形式如下:

sklearn.metrics.make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs)

它的参数如下:

score_func一个可调用的记分函数,如sklearn.metrics.accuracy_score等,也可以是一个损失函数,如sklearn.metrics.mean_squared_error等
greater_is_better输入的score_func为记分函数时,该值为True(默认值);输入函数为损失函数时,该值为False;在后面这种情况中,得到的对象会对结果进行翻转,因为损失函数意味着函数值越小,拟合情况越好
needs_probascore_func是否需要获得一个predict_proba来得到分类器的概率估计,
如果是True,对于二元的标签值,score_function需要接受的y_pred是一个一维的
needs_thresholdscore_func是否具有连续的决策确定性。这只适用于使用具有decision_function或predict_proba方法的分类器的二元分类。如果为真,对于二进制y_true, score函数应该接受一维的y_pred(即,正类或决策函数的概率)。例如,平均精度或roc曲线下的面积不能使用离散预测来计算

这个函数返回的是一个可调用的记分对象。
实例如下:

model = LGBMRegressor(max_depth=5,num_leaves=10,objective="regression")
score_ = cross_val_score(model,X = X_train,y=Y_train,verbose=0,scoring=make_scorer(mean_squared_error))
print(score_)

输出结果:[0.46157155 0.47102463 0.47506401 0.44817591 0.46550807]

### 解决 `from sklearn.metrics.pairwise import cosine_similarity` 报错的方法 当尝试通过 `from sklearn.metrics.pairwise import cosine_similarity` 导入时发生错误,可能的原因包括版本不兼容、安装问题或其他依赖项缺失。以下是针对此问题的具体分析和解决方案。 #### 1. 检查 scikit-learn 的版本 确保当前使用的 scikit-learn 版本支持该模块的功能。如果使用的是较旧版本的 scikit-learn,则可能会遇到此类导入错误。可以通过以下命令检查已安装的 scikit-learn 版本: ```bash pip show scikit-learn ``` 若版本低于 0.22(cosine_similarity 功能在此版本之后被优化并稳定),建议升级到最新版本[^1]: ```bash pip install --upgrade scikit-learn ``` #### 2. 替代导入方式 另一种方法是从更高层次的包中调用函数,而不是直接从子模块导入。例如,可以改为如下形式来实现相同功能[^2]: ```python from sklearn import metrics result = metrics.pairwise.cosine_similarity(word1_embed, word2_embed) ``` 这种方式能够有效规避某些特定情况下因路径定义不同而导致的冲突或异常行为。 #### 3. 获取最高相似度索引 对于需要获取最接近向量的情况,可利用 numpy 结合上述计算结果完成操作[^3]。下面展示了一个完整的例子用于说明如何选取前 N 高的余弦相似度及其对应的下标: ```python import numpy as np from sklearn.metrics.pairwise import cosine_similarity # 假设我们有两组嵌入矩阵 A 和 B (形状分别为 m*d 和 n*d) A = np.random.rand(5, 3) B = np.random.rand(4, 3) similarity_matrix = cosine_similarity(A, B) # 找出每行最大的 top-n 列号(topn=2作为示范) topn = 2 indices_of_max_similarities_per_row = np.argsort(similarity_matrix, axis=1)[:,-topn:] print("Indices of max similarities:", indices_of_max_similarities_per_row) ``` 以上代码片段展示了如何基于给定输入数据集找到与其最为相近的一系列样本点的位置信息。 --- ### 总结 综上所述,解决 `from sklearn.metrics.pairwise import cosine_similarity` 报错的关键在于确认环境配置无误以及采用灵活多样的编程技巧绕开潜在障碍。具体措施包括但不限于更新库文件至适配版次或者调整实际运用中的加载策略等手段加以应对处理。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值