% % 本征值与本征向量
a = rand(3) % 产生一个3阶 随机矩阵,(0,1)之间随机分布
% eig(a) 方阵a的特征值
[eigen_vector,eigenvalue] = eig(a) % 本征向量,本征值。(本征=特征)
% % 线性方程组
disp(' 求解ax=b。具体为:x+2y=1,3x-2y=4 ') % 唯一解
a = [1,2;3,-2];
b = [1;4];
disp('rank(a),rank([a,b]),求出系数矩阵、增广矩阵的秩,如果秩相等有解,秩不相等无解')
[ rank(a),rank([a,b]) ]
x = inv(a)*b % 方程两边,在左边乘a的逆矩阵,也可写成x = a\b
disp(' 求解ax=b。具体为:x+2y+z=1,3x-2y+z=4 ') % 无穷多解
a = [1,2,1;3,-2,1];
b = [1;4];
disp('rank(a),rank([a,b]),求出系数矩阵、增广矩阵的秩,如果秩相等有解,秩不相等无解')
[ rank(a),rank([a,b]) ]
disp('有无穷多解,给出其中0元素最多的一个解')
x = a\b % 有时候系数矩阵不是方阵,没有逆矩阵
3.1本征值和线性方程组
最新推荐文章于 2023-04-06 19:30:22 发布
本文介绍了如何利用Python中的numpy.linalg.solve和scipy.linalg.solve求解线性方程组,同时提及了scipy.optimize.fsolve解决非线性方程组的方法。
摘要由CSDN通过智能技术生成