3.1本征值和线性方程组

本文介绍了如何利用Python中的numpy.linalg.solve和scipy.linalg.solve求解线性方程组,同时提及了scipy.optimize.fsolve解决非线性方程组的方法。
摘要由CSDN通过智能技术生成
% % 本征值与本征向量
a = rand(3)    % 产生一个3阶 随机矩阵,(0,1)之间随机分布
% eig(a)  方阵a的特征值
[eigen_vector,eigenvalue] = eig(a)  % 本征向量,本征值。(本征=特征)

% % 线性方程组
disp(' 求解ax=b。具体为:x+2y=1,3x-2y=4 ')  % 唯一解
a = [1,2;3,-2];
b = [1;4];
disp('rank(a),rank([a,b]),求出系数矩阵、增广矩阵的秩,如果秩相等有解,秩不相等无解')
[ rank(a),rank([a,b]) ]
x = inv(a)*b  % 方程两边,在左边乘a的逆矩阵,也可写成x = a\b

disp(' 求解ax=b。具体为:x+2y+z=1,3x-2y+z=4 ')  % 无穷多解
a = [1,2,1;3,-2,1];
b = [1;4];
disp('rank(a),rank([a,b]),求出系数矩阵、增广矩阵的秩,如果秩相等有解,秩不相等无解')
[ rank(a),rank([a,b]) ]
disp('有无穷多解,给出其中0元素最多的一个解')
x = a\b   % 有时候系数矩阵不是方阵,没有逆矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nutron-ma

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值