题目描述:
Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping.
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps.
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence.
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.
You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.
Input
The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.
Output
For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.
Sample Input
2
0 0
3 4
3
17 4
19 4
18 5
0
Sample Output
Scenario #1
Frog Distance = 5.000
Scenario #2
Frog Distance = 1.414
思路分析:
这道题意思是找一条能通过的路,使得这条路中的最大的边,比其它所有可能的路中最大边边都小。
每一步都尽可能小。但是要注意这种情况 1(2)5(7)2,1(3)4(6)2 应该算6最小。错误代码就是没能排除这类情况
AC代码 (基于Dijjkstra)
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <queue>
#include <stack>
#include <algorithm>
#include <string.h>
#include <math.h>
#define INF 0x3f3f3f3f
using namespace std;
int n;
double g[220][220];
double x[220],y[220];
double dis[220];
int mark[220];
double f(int i,int j){
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
}
int main(){
int m=1;
while(scanf("%d",&n),n){
memset(mark,0,sizeof(mark));
for(int i=1;i<=n;i++)
dis[i]=INF;
for(int i=1;i<=n;i++){
scanf("%lf%lf",&x[i],&y[i]);
for(int j=1;j<i;j++){
g[i][j]=g[j][i]=f(i,j);
}
g[i][i]=0;
}
dis[1]=0;
for(int i=0;i<n;i++){
int q=INF,p;
for(int j=1;j<=n;j++){
if(!mark[j]&&dis[j]<q){ //已经探索过的点无需再探索
p=j;
q=dis[j];
}
}
mark[p]=1;
for(int j=1;j<=n;j++)
dis[j]=min(dis[j],max(dis[p],g[p][j])); //每一条路径最大跳跃距离,全部可达路径最小跳跃范围
}
printf("Scenario #%d\n",m++);
printf("Frog Distance = %.3f\n\n",dis[2]);
}
}
AC代码(基于Flory)
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <queue>
#include <stack>
#include <algorithm>
#include <string.h>
#include <math.h>
#define INF 0x3f3f3f3f
using namespace std;
int n;
double g[220][220];
double x[220],y[220];
double f(int i,int j){
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
}
int main(){
int m=0;
while(scanf("%d",&n),n){
for(int i=1;i<=n;i++){
scanf("%lf%lf",&x[i],&y[i]);
for(int j=1;j<i;j++)
g[i][j]=g[j][i]=f(i,j);
g[i][i]=0;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
g[i][j]=min(g[i][j],max(g[i][k],g[k][j]));
printf("Scenario #%d\nFrog Distance = %.3f\n\n",++m,g[1][2]);
}
}
错误代码
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <queue>
#include <stack>
#include <algorithm>
#include <string.h>
#include <math.h>
#define INF 0x3f3f3f3f
using namespace std;
int n;
double g[220][220];
double x[220],y[220];
double dis[220];
int mark[220];
int other[220];
double f(int i,int j){
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
}
int main(){
int m=1,top_next;
while(scanf("%d",&n),n){
top_next=0;
double max_dis=0;
for(int i=1;i<=n;i++){
dis[i]=INF;
}
memset(mark,0,sizeof(mark));
for(int i=1;i<=n;i++){
scanf("%lf%lf",&x[i],&y[i]);
for(int j=1;j<i;j++){
g[i][j]=g[j][i]=f(i,j);
}
}
dis[1]=0;
for(int i=0;i<n;i++){
int q=INF,p;
for(int j=1;j<=n;j++){
if(!mark[j]&&dis[j]<q){
p=j;
q=dis[j];
}
}
other[top_next++]=p;
if(q==INF||p==2)break;
mark[p]=1;
for(int j=1;j<=n;j++){
if(!mark[j]&&dis[j]>g[p][j]){
dis[j]=g[p][j];
}
}
}
for(int i=0;i<top_next-1;i++){
if(g[other[i]][other[i+1]]>max_dis){
max_dis=g[other[i]][other[i+1]];
}
}
printf("Scenario #%d\n",m++);
printf("Frog Distance = %.4f\n\n",max_dis);
}
}