Learning Deep Models for Face Anti-Spoofing: Binary or Auxiliary Supervision CVPR2018

该论文提出了一种利用深度模型进行人脸防伪的方法,通过空间和时间辅助信息而非传统的二进制监督来增强模型的鲁棒性。空间角度上,利用真实人脸的深度特征(如鼻子距离相机更近)与平面伪造人脸的差异;时间维度上,通过检测正常的心率信号(rPPG)来区分真实和伪造的面部视频。这种方法有助于提高对伪造人脸检测的准确性。
摘要由CSDN通过智能技术生成

Learning Deep Models for Face Anti-Spoofing: Binary or Auxiliary Supervision

论文原文

提出了一种深度模型,其使用来自空间和时间辅助信息j进行监督,而不是二进制监督,以便从人脸视频中鲁棒地检测人脸PA。从空间角度来看,已知真实人脸具有face-like depth,例如,在正视人脸中,鼻子比脸颊更接近相机,而打印或视频中的人脸是平面的,纸张图像上的所有像素相对于相机具有相同的深度。因此,深度可以被用作辅助信息。从时间角度来看,研究表明,正常的rPPG信号(即心脏脉冲信号)可以从live中检测到,但不能从伪造的面部视频中检测。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值