Learning Deep Models for Face Anti-Spoofing: Binary or Auxiliary Supervision
论文原文
提出了一种深度模型,其使用来自空间和时间辅助信息j进行监督,而不是二进制监督,以便从人脸视频中鲁棒地检测人脸PA。从空间角度来看,已知真实人脸具有face-like depth,例如,在正视人脸中,鼻子比脸颊更接近相机,而打印或视频中的人脸是平面的,纸张图像上的所有像素相对于相机具有相同的深度。因此,深度可以被用作辅助信息。从时间角度来看,研究表明,正常的rPPG信号(即心脏脉冲信号)可以从live中检测到,但不能从伪造的面部视频中检测。
