Learning Deep Models for Face Anti-Spoofing: Binary or Auxiliary Supervision CVPR2018
于 2022-09-09 16:02:23 首次发布
该论文提出了一种利用深度模型进行人脸防伪的方法,通过空间和时间辅助信息而非传统的二进制监督来增强模型的鲁棒性。空间角度上,利用真实人脸的深度特征(如鼻子距离相机更近)与平面伪造人脸的差异;时间维度上,通过检测正常的心率信号(rPPG)来区分真实和伪造的面部视频。这种方法有助于提高对伪造人脸检测的准确性。
摘要由CSDN通过智能技术生成