3DSA-MFN:用于高光谱图像分类的结合3D自注意力的多尺度特征融合网络

本文提出了一种名为3DSA-MFN的新型网络模型,用于高光谱图像分类任务。该模型利用多尺度特征融合和改进的3D多头自注意力机制,有效地提取了空间和光谱特征,并建立了长距离依赖关系。实验结果表明,3DSA-MFN在网络性能方面表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文题目: Multiscale Feature Fusion Network Incorporating 3D Self-Attention for Hyperspectral Image Classification
作者: 中北大学
在这里插入图片描述
期刊: 中科院二区 Remote Sensing

摘要:
近年来,基于深度学习的高光谱图像(HSI)分类方法取得了巨大成功,卷积神经网络(CNN)方法在HSI分类任务中取得了良好的分类性能。然而,卷积操作仅适用于局部邻域,并且在提取局部特征方面是有效的。长距离的交互特征难以捕捉,在一定程度上影响了分类的准确性。同时,来自HSI的数据具有三维、冗余和噪声的特点。为了解决这些问题,我们提出了一种集成了 3D 多头自注意力的 3D 自注意力多尺度特征融合网络(3DSA-MFN)。 3DSA-MFN首先使用不同大小的卷积核提取多尺度特征,对特征图的不同粒度进行采样,有效融合特征图的空间和光谱特征。然后,我们提出了一种改进的 3D 多头自注意力机制,为自注意力分支提供局部特征细节,并充分利用输入矩阵的上下文。为了验证所提出方法的性能,我们将其与三个公共数据集上的六种当前方法进行了比较。实验结果表明,所提出的3DSA-MFN实现了有竞争力的分类并突出了HSI分类任务。

1、介绍

贡献&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值