论文题目: Multiscale Feature Fusion Network Incorporating 3D Self-Attention for Hyperspectral Image Classification
作者: 中北大学
期刊: 中科院二区 Remote Sensing
摘要:
近年来,基于深度学习的高光谱图像(HSI)分类方法取得了巨大成功,卷积神经网络(CNN)方法在HSI分类任务中取得了良好的分类性能。然而,卷积操作仅适用于局部邻域,并且在提取局部特征方面是有效的。长距离的交互特征难以捕捉,在一定程度上影响了分类的准确性。同时,来自HSI的数据具有三维、冗余和噪声的特点。为了解决这些问题,我们提出了一种集成了 3D 多头自注意力的 3D 自注意力多尺度特征融合网络(3DSA-MFN)。 3DSA-MFN首先使用不同大小的卷积核提取多尺度特征,对特征图的不同粒度进行采样,有效融合特征图的空间和光谱特征。然后,我们提出了一种改进的 3D 多头自注意力机制,为自注意力分支提供局部特征细节,并充分利用输入矩阵的上下文。为了验证所提出方法的性能,我们将其与三个公共数据集上的六种当前方法进行了比较。实验结果表明,所提出的3DSA-MFN实现了有竞争力的分类并突出了HSI分类任务。
1、介绍
贡献&#