目的:网络流量分类一直是学术界、产业界和网络监管部门共同关注的热点之一,是指将混合流量分成不同的流量类别,依据是不同的网络应用或协议的特征或参数。一方面,网络安全领域需要识别入侵流量;另一方面,进行网络管理时需要对不同应用的流量分类分析,从而合理控制和分配资源,保证网络QoS。随着网络流量的数据量和种类的大量增加,传统分类方法难以满足要求,基于机器学习的算法成为网络流量分类的研宄热点。针对机器学习特征工程造成的瓶颈,本文研究了以卷积神经网络为主的深度学习算法在网络流量分类中的应用。
方法:1.三维卷积神经网络应用于网络流量分类。
2.针对卷积神经网络将未知类别强行划分为己知类造成的差错,
本文对网络的类别判断层进行了改进。通过仿真实验,本文验证了类别判断错误(包括未知类别)时,概率最大的类别对应概率值的分布明显区分于判断正确时概率值的分布。根据以上发现,本文为类别判断层设置了动态阈值,在训练发现的最优阈值下,本文能有效识别未知类别。
数据预处理模块分为数据流切割、关键数据提取、维度转换、时序组合四部分。
1.数据流切割:将原始流量分为离散数据流单元,每个数据流为一个样本。数据流的判断标准是具有相同五元组(源&#
基于深度学习的网络流量分类技术研究
最新推荐文章于 2024-05-05 17:38:52 发布