网络流量分类方法调研

本文调研了网络流量分类方法,包括基于端口、有效负载和流量统计的传统方法,以及监督学习和无监督学习的流量分类框架。深度学习模型如CNN、RNN在流量分类中表现出高适应性,成为研究热点。同时,文章提到了常用数据集WIDE和CIC,以及流量数据预处理方法,探讨了未来发展方向,即实时分析和加密流量识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

网络流量分类方法调研

传统的网络流量分类方法

基于端口

最初的标准协议都分配有固定的端口,如HTTP服务的端口号为80,SMTP(简单邮件传输协议)服务的端口号为25等。在解析出数据包的端口信息后,可以据此推断网络流量所属协议类型
问题:随着动态端口、伪装端口及不标准端口号的出现,该方法的识别准确率显著下降。

基于有效负载

基于有效负载的方法,如深度包检测,通过在IP包的有效负载中搜索应用程序的签名,能够在一定程度上避免动态端口问题。
问题:
-当加密流量出现时,该方法很难实现且计算开销很高
-面对快速发展的网络,需要不断地更新和维护协议特征库

基于流量统计

依据流量的一些外部统计特征,如包间时间、总包数、流量持续时间等,多采用机器学习方法实现流量的分类
常用的机器学习算法有:
-机器学习中的经典算法:随机森林、SVM、朴素贝叶斯、C4.5等、各种聚类算法
-深度学习模型:神经网络CNN、RNN等;去噪自编码器
特点:对动态端口和加密流量等具有高适应性,是当前流量分类领域的研究热点。

流量分类框架

监督学习

利用一组已标记的数据样本训练一个流量分类器,将未识别流量划分到所能识别的已知类别中,目前准确率基本可达到98%以上。

无监督学习

通过聚类等无监督学习算法对一组无标记样本自动进行分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值