Ai-gan: Attack-inspired generation of adversarial examples-阅读札记

Ai-gan: Attack-inspired generation of adversarial examples

阅读笔记


文章信息:Bai, Tao, Zhao, Jun, Zhu, Jinjin, Han, Shoudong, Chen, Jiefeng, Li, Bo, & Kot, Alex. (2021, September). Ai-gan: Attack-inspired generation of adversarial examples. In 2021 IEEE International Conference on Image Processing (ICIP) (pp. 2543-2547). IEEE. (CCFA 被引:11)

Abstract

  介绍提出了一种新的生成对抗样本的方法:Ai-gan,并且是此类问题第一个在比较复杂的数据集上进行实验的(Cifar10)。

1、Introdution

  以前(传统的生成对抗样本的方法:FGSM、PGD等)存在的生成对抗样本的方法比较耗时,并且计算比较复杂。现在一些研究者用GAN来生成对抗样本,分为两类:1、生成一个扰动,然后加到原样本上;2、直接生成对抗样本。但是这些方法
  **存在问题

  • 问题1:这个产生的能力是有限制的,一次只能生成一个特定的类,如果需要其他的类,就要重新训练。
  • 问题2:很多之前的工作都只是在比较简单的数据集上进行实验的,如MNIST和CIFAR10。

  解决问题:提出了AI-GAN生成对抗样本。

  方法框架
在这里插入图片描述
  鉴别器:鉴别器用了AC-GAN,既可以分别真假图片,又可以分别具体类,并且为了提高生成器生成的对抗样本的攻击能力,添加了attacker进行对抗训练,attacker的添加也可以增加训练的稳定性。


在这里插入图片描述
  鉴别器训练的目标是最大化这个损失函数,LCadv损失是提高鉴别器鉴别attacker对抗样本的能力;Lcpert损失是提高鉴别器鉴别生成的对抗样本的能力;Ls是提高鉴别器分别图片真假的能力。

  生成器:用干净样本和目标类作为输入,并且为了生成器的可拓展性,将预训练的编码器加入,可以使方法更接近于特征空间攻击从而增加了对抗样本的可转移性,生成器的损失函数为:


在这里插入图片描述
  生成器训练的目标是最大化这个损失函数,Ltarget(pert)是在目标模型下提高生成器生成对应目标标签的扰动的能力,LD(pert)是在鉴别器下提高生成器生成对应目标标签的扰动的能力,LS是前面提到的。

Contribution

  ⭐与以前的工作不同,提出一种称为AI-GAN的新型GAN框架,其中发生器、鉴别发生器和攻击者联合训练;

  ⭐ AI-GAN方法(作者提出的)是第一个将生成对抗样本的思想用在较为复杂数据集上的(CIFAR-100);

  ⭐ AI-GAN在不同数据集上表现出强大的攻击能力,并通过大量实验在不同环境下优于现有方法。


2、Related Work

一、生成扰动:
  [1 Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Belongie, “Generative adversarial perturbations,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4422–4431.
第一次提出生成对抗扰动(四种扰动:通用的、依赖图片的、无目标、有目标)的概念。

  [2] Xiaofeng Mao, Yuefeng Chen, Yuhong Li, Yuan He,and Hui Xue, “Gap++: Learning to generate target-
conditioned adversarial examples,” arXiv preprint arXiv:2006.05097, 2020.
在[1]的基础上增加了条件目标。

  [3] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He,Mingyan Liu, and Dawn Song, “Generating Adversarial
Examples with Adversarial Networks,” in IJCAI, 2018. (advGAN)
用Gan的思想去生成接近真实世界的对抗样本。

二、直接生成对抗样本:
  [4Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon, “Constructing Unrestricted Adversarial Exam-
ples with Generative Models,” in NIPS, pp. 8312–8323.2018.
提出生成无限制的对抗样本。

  个人补充:Zhou S, Zhang Y, Cao G, et al. Generating Adversarial Examples by Distributed Upsampling[C]//International Conference on Neural Information Processing. Springer, Cham, 2021: 177-189.(CCF C)


3、Experiments

  首先比较了几个方法的运行时间
在这里插入图片描述

  展示了AI-GAN在几个模型上生成不同类的性能在这里插入图片描述在这里插入图片描述

  在没有防御情况下,Adv-GAN、AI-GAN的性能比较
在这里插入图片描述

  在有防御的情况下,与各个攻击方法的性能比较,排名前2的加粗显示
在这里插入图片描述

  在CIfar100上的实验图片,这张图是在Cifar100上面的攻击成功率,这是通过混淆矩阵表示的,这个图的意思是对角线表示攻击成功的概率,其他的表示失败的概率,一般的混淆矩阵是直接在矩阵中用数字表示,比如,对角线上写的是500,就表示正确的个数有500个,但是这里坐标太密集了,用数字不好表示,作者就用色卡来表示:
在这里插入图片描述

7、Conclusion

  突出创新点我认为在于:一、加入了attacker进行对抗训练;二、第一次在复杂的数据集上测试效果(Cifar-100)。

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值