测度论概念整理

测度论概念整理

本文主要整理一些测度论基础概念,以供快捷查阅。(可能会持续更新)

单调序列

{ A n , n = 1 , 2 , . . . } \{A_n,n=1,2,...\} {An,n=1,2,...}是一个集合序列,如果对每个 n = 1 , 2 , . . . n=1,2,... n=1,2,...
A n ⊂ A n + 1 A_n\subset A_{n+1} AnAn+1
则称 A n A_n An是非降的,记为 A n ↑ A_n\uparrow An。并把集合 lim ⁡ n → ∞ A n = d e f ⋃ n = 1 ∞ A n \lim\limits_{n\rightarrow\infty}A_n\xlongequal[]{def}\bigcup_{n=1}^\infty A_n nlimAndef n=1An为它的极限。反之,则称 A n A_n An为非增的,记为 A n ↓ A_n\downarrow An,并称 lim ⁡ n → ∞ A n = d e f ⋂ n = 1 ∞ A n \lim\limits_{n\rightarrow\infty}A_n\xlongequal[]{def}\bigcap_{n=1}^\infty A_n nlimAndef n=1An为它的极限。

非降和非增的集合序列统称为单调序列。单调集合序列总有极限。

集合系

以空间 X X X中的一些集合为元素组成的集合称为 X X X上的集合系。换句话说,集合系是集合的集合,是空间 X X X的幂集的子集。集合系一般用花体字母表示。

π \pi π

如果 X X X上的非空集合系 P \mathscr{P} P对交的运算是封闭的,则为** π \pi π系**。

半环

满足以下条件的 π \pi π D \mathscr{D} D称为半环:对任意的 A , B ∈ D A,B\in \mathscr{D} A,BD A ⊃ B A\supset B AB,存在有限个两两不交的 { C k ∈ D , k = 1 , . . . , n } \{C_k\in\mathscr{D},k=1,...,n\} {CkD,k=1,...,n}使得
A ∖ B = ⋃ k = 1 n C k A\setminus B=\bigcup_{k=1}^nC_k AB=k=1nCk
即任意两个集合的差一定能由其中的元素取并得到。

如果非空集合系对并和差的运算是封闭的,那么被称为

域/代数

满足下列条件的 π \pi π A \mathscr{A} A称为
X ∈ A A ∈ A ⇒ A c ∈ A X\in\mathscr{A}\\ A\in\mathscr{A}\Rightarrow A^c\in\mathscr{A} XAAAAcA
简单来讲需要满足两个条件:

  • 全集属于A
  • 补运算封闭

域也被称为代数

定理:半环必是 π \pi π系;环必是半环;域必是环。

单调系

如果对集合系 M \mathscr{M} M中的任何单调序列 { A n , n = 1 , 2 , . . . } \{A_n,n=1,2,...\} {An,n=1,2,...}均有 lim ⁡ n → ∞ A n ∈ M \lim\limits_{n\rightarrow\infin}A_n\in\mathscr{M} nlimAnM,则把 M \mathscr{M} M叫做单调系

λ \lambda λ

集合系 L \mathscr{L} L称为** λ \lambda λ系**,如果它满足下列条件:
X ∈ L ; A , B ∈ L ∧ A ⊃ B ⟹ A ∖ B ∈ L ; A n ∈ L ∧ A n ↑ ⟹ ⋃ n = 1 ∞ A n ∈ L . X\in\mathscr{L};\\ A,B\in\mathscr{L} \wedge A\supset B\Longrightarrow A \setminus B \in \mathscr{L};\\ A_n\in\mathscr{L} \wedge A_n\uparrow \Longrightarrow \bigcup_{n=1}^\infty A_n \in \mathscr{L}. XL;A,BLABABL;AnLAnn=1AnL.
解释:需要满足三个条件

  • 全集属于集合系;
  • 对差运算封闭;
  • 是单调系。

σ \sigma σ域/ σ \sigma σ代数

满足下列三个条件的集合系 L \mathscr{L} L称为 σ \sigma σ域:
X ∈ L ; A ∈ L ⟹ A c ∈ L ; A n ∈ L , n = 1 , 2 , . . . ⟹ ⋃ n = 1 ∞ A n ∈ L . X \in \mathscr{L}; \\ A \in \mathscr{L} \Longrightarrow A^c \in \mathscr{L}; \\ A_n \in \mathscr{L},n=1,2,... \Longrightarrow \bigcup_{n=1}^\infty A_n \in \mathscr{L}. XL;ALAcL;AnL,n=1,2,...n=1AnL.
解释:需要满足三个条件

  • 全集属于集合系;
  • 对补运算封闭;
  • 单调系。

定理 σ \sigma σ域是域, λ \lambda λ系是单调系, σ \sigma σ域是 λ \lambda λ系。

定理:一个既是单调系又是域的集合系必是 σ \sigma σ域。

定理:一个既是 λ \lambda λ系又是 π \pi π系的集合系必是 σ \sigma σ域。

σ \sigma σ域的成员被称为可测集,我们最终是要在 σ \sigma σ域上建立测度。非空集合 X X X和集合 X X X的一个 σ \sigma σ F \mathscr{F} F放在一起写成的 ( X , F ) (X,\mathscr{F}) (X,F)将称为可测空间

σ \sigma σ

称非空集合系 R \mathscr{R} R是一个 σ \sigma σ环,如果:
A , B ∈ R ⟹ A ∖ B ∈ R ; A n ∈ R , n = 1 , 2 , . . . ⟹ ⋃ n = 1 ∞ A n ∈ R . A,B\in\mathscr{R}\Longrightarrow A \setminus B \in \mathscr{R};\\ A_n \in \mathscr{R}, n=1,2,... \Longrightarrow \bigcup_{n=1}^\infty A_n \in \mathscr{R}. A,BRABR;AnR,n=1,2,...n=1AnR.
一个对可列并运算封闭的环是 σ \sigma σ环;一个包含 X X X σ \sigma σ环是 σ \sigma σ域。

Borel集合系

对于拓扑空间 X X X,以 O \mathscr{O} O记其开集系,博雷尔集合系定义为包含 O \mathscr{O} O的最小的 σ \sigma σ域,其中的集合称为 X X X中的博雷尔集

Bogachev 测度论电子版是一本重要的数学书籍,由俄罗斯数学家Vladimir I. Bogachev所著。该书主要讲述测度论及其在概率论和数学分析中的应用。 测度论是数学中研究集合的度量方法的分支。测度是一种给集合分配“大小”的数学概念。Bogachev测度论电子版系统地介绍了测度论的基本概念和性质,包括测度的可数可加性、有限可加性、连续性等。 该书重点讨论了测度论概率论中的应用。在概率论中,我们常常需要对事件的概率进行度量。Bogachev测度论电子版详细解释了如何使用测度论的工具和理论来描述概率空间以及事件的概率分布。对于任何一个概率空间,测度论为我们提供了一种通用的框架,使我们能够研究概率、期望、条件概率以及随机变量等等。 此外,Bogachev测度论电子版还讨论了测度论在数学分析中的应用。测度论为我们提供了一种有力的工具来研究函数的性质和性质的度量。通过引入测度等概念,我们可以精确地描述函数的连续性、可积性以及其他重要的性质。这种工具在分析领域中具有广泛的应用,为解决许多复杂的数学问题提供了新的思路和方法。 总之,Bogachev测度论电子版是一本介绍测度论及其在概率论和数学分析中应用的重要书籍。该书详细而系统地阐述了测度论的基本概念、性质以及其在概率论和数学分析中的重要应用,对于从事相关研究和应用的数学学者和研究者具有重要的参考价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值