安装并验证tensorflow是否可用

  • 安装
pip install --upgrade pip
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple/ --upgrade tensorflow
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple/ --upgrade tensorflow-gpu
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple/ --upgrade tensorflow-probability
  • 验证
import tensorflow as tf
tf.__version__

#检验CPU版TensorFlow是否可用:
tf.reduce_sum(tf.random.normal([1000, 1000]))

#检验GPU版TensorFlow是否可用:
#tf.test.is_gpu_available()
tf.config.list_physical_devices('GPU') #检验GPU版TensorFlow是否可用:
  • 另一种在ipython下验证的方法
import tensorflow as tf 
with tf.device('/GPU:0'):
    a = tf.constant(3)
### 验证 TensorFlow 安装成功的多种方法 为了确认 TensorFlow 已经正确安装能够正常工作,可以通过编写一段简单的 Python 脚本来运行基本操作。这段脚本可以在命令行工具中执行。 对于 TensorFlow 1.x 版本而言,在导入库之后应当禁用即时执行模式以便兼容旧版API[^1]: ```python import tensorflow as tf tf.compat.v1.disable_eager_execution() ``` 接着定义一些常量通过会话对象来获取它们的结果以证明 TensorFlow 可以被调用且返回预期值[^4]: ```python sess = tf.Session() a = tf.constant(1) b = tf.constant(2) print(sess.run(a + b)) ``` 如果一切顺利的话,上述代码应该输出整数 `3` 。这表明 TensorFlow 成功加载且能够在当前环境中执行基础运算。 当涉及到 GPU 支持时,则需要进一步观察日志信息。通常情况下,成功启动带有 GPU 加速功能的 TensorFlow 应该会在控制台打印出有关设备映射的消息,显示可用的 GPU 设备列表以及其对应的编号[^2]。 另外一种更直观的方式是在 PyCharm 或者其他 IDE 中创建项目文件来进行测试。下面是一个例子,它不仅展示了如何相加两个张量还说明了怎样利用 session 来获得最终结果[^5]: ```python import tensorflow as tf # 定义两个向量 a 和 b a = tf.constant([1.0, 2.0], name='a') b = tf.constant([2.0, 3.0], name='b') result = a + b with tf.Session() as sess: print(sess.run(result)) # 输出应为 [3., 5.] ``` 以上几种方式都可以有效地帮助检测 TensorFlow 是否已经正确配置完毕,且可以根据具体需求选择最合适的验证手段。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值