TensorFlow查看GPU是否可用

文章讲述了如何使用TensorFlow的is_gpu_available()函数检测GPU的可用性,强调了确保TensorFlow-gpu版本与CUDA、CUDNN版本相匹配的重要性。作者分享了个人在项目中的经验,尤其是在处理不同版本兼容问题时的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tensorflow查看GPU是否可用

import tensorflow as tf
tf.test.is_gpu_available()

返回为True表示可以使用,返回为False表示不可以使用

在这里插入图片描述

在这里插入图片描述

note:

  • 不可使用的话需要注意查看自己的tensorflow是不是下载的tensorflow-gpu,如果安装的是普通的tensorflow,是不能在GPU上进行加速的。
  • FALSE还有一个原因可能就是,tensorflow的版本与cuda、cudnn、python版本没有相对应,需要注意一定得对应起来,对应关系可以参考官方给出的文档。点击跳转
  • CUDA(也就是cudatoolkit)版本虽然是可以向下兼容的,但是还是建议和官网一致。

在一次的项目中,由于项目tensorflow版本为1.14.0,所以按照官网的要求就务必安装CUDA 10 ,CUDNN 7.4,但是CUDNN 7.4就没办法安装到虚拟环境里面,所以本人安装了CUDNN为7.6.0的版本。然后测试发现也是可以的,故我个人认为,安装好CUDA之后,安装CUDNN只需要通过conda search cudnn --info找到CUDA支持的CUDNN就可以了。

😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃

如果有帮助的话,留个赞再走吧 ,感谢 😃,有任何问题评论区留言,看到我会和大家一起探索的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值