MaskGAN
结构:Seq2Seq
Generator
对于离散序列
x
x
x=(
x
1
x_1
x1,····,
x
T
x_T
xT),生成一个长度相同的二进制掩码
m
m
m=(
m
1
m_1
m1,···,
m
T
m_T
mT),其中每个
m
T
m_T
mT
∈
∈
∈{
0
0
0,
1
1
1},选择将保留哪些标记。如果掩码为
0
0
0,则时间
t
t
t,
x
t
x_t
xt处的令牌被替换为特殊掩码令牌,如果掩码为
1
1
1,则保持不变。
编码器读取mask序列,将其表示为
m
m
m(
x
x
x),其中掩码是按元素应用的。编码器在解码期间为MaskGAN提供对未来上下文的访问。解码器的条件是mask文本
m
m
m(
x
x
x)以及它在此之前填充的内容。生成器将序列上的分布分解为有序的条件序列:
Discriminator具有与Generator相同的体系结构,但输出是每个时间点的标量概率,而不是词汇表大小的分布。
必须给鉴别器一个真实的上下文,否则,该算法就有一个临界失效模式。例如,在没有上下文的情况下,如果给鉴别器“the director director guided the series”的填充序列,那么它将无法可靠地将director—— director二元组识别为假文本,尽管这个二元组可能从未出现在训练语料库中(除了错误的打字错误)。原因是不清楚director的两个出现中哪一个是假的;theassociatedirector guided the series ,或者the directorexpertlyguided the series都是潜在的有效序列。在没有上下文的情况下,鉴别器赋予两个词相同的概率。当然,对于Generator这是一个不准确的学习信号,这将不会正确地惩罚产生这些二元组。为了防止这种情况的发生,在给定mask序列 m m m( x x x)的真实上下文情况下。鉴别器 D φ D_φ Dφ计算每个token: x x x − ^- − t _t t为真实值的概率。
判别器估计的对数被视为reward
第三个网络是critic网络,它被实现为一个附加的head-off鉴别器。critic估计值函数,即填充序列
的总收益,其中γ是序列中每个位置的贴现因子
训练
策略梯度