简单介绍ogb包(open graph benchmark)(图神经网络的基准数据集)

简介

Open Graph Benchmark (OGB) 是一个图深度学习的基准数据集。
官网:https://ogb.stanford.edu/
该包斯坦福开发,源自论文:

Open Graph Benchmark: Datasets for Machine Learning on Graphs
在这里插入图片描述

数据集

那么其包含了哪些数据集呢?
在这里插入图片描述
从上图可以看到,其包含了来自不同领域,不同数量级,不同任务的数据集。

下载

conda install ogb
#或者
pip install ogb

使用

其开发了一个包,名字叫做ogb,并且提供了接口给两大最流行的图神经网络库:DGL和PyG。

例如如果我们要做节点分类这个任务,可以如下使用ogb提供的基准数据集,

如果你使用DGL库:

import dgl
import torch
from ogb.nodeproppred import DglNodePropPredDataset#即node property prediction
dataset = DglNodePropPredDataset(name = d_name)#使用节点分类具体哪一个数据集。

如果你使用PyG库:

import torch_geometric
import torch
from ogb.nodeproppred import PygNodePropPredDataset
dataset = PygNodePropPredDataset(name = d_name)#使用节点分类具体哪一个数据集。

至于再接下来怎么用,那就是DGL和PyG的事情了,就是操作这个dataset即可。

那么问题是这些name有哪些选项呢?也就是说,哪里找这些数据集的名字,当然是官网喽。

不如我们要找节点分类的数据集有哪些:

https://ogb.stanford.edu/docs/nodeprop/#dgl
如下,这些name表示我们都可以用。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值