浅谈LTI系统与卷积

参考

信号与系统(第二版)奥本海姆

系统

在开始正文之前,可以回顾一下,信号与系统的思想。实际上,系统的思想广泛存在并应用于现实世界中。比如,大学可以是一个系统,每一个学生可以视作单个输入,大学中的各类课程可以看出是系统响应,每一个年级的学生看成一个输入序列。那么,输出就可以看成,每一位学生与这个学校的所有课程做卷积的一个过程(默认大学是LTI系统),因此最终的输出结果也是一个序列。

一般来说,我们习惯于使用数学模型来描述一个系统即y=f(x)只不过这里的x在时域系统上是x=f(t)在空域系统上是x=f(n)(n可以是多维向量,用以表示多维空间的坐标)。在信号处理中,我们一般研究时域上面的系统。

LTI系统

LTI系统全称是线性时不变系统(Linear Invariant System)。在空域上即是LSI系统。显然LTI系统是一类系统其具有线性与时不变性。这对于卷积的理解至关重要。

线性即系统对于一个序列的输出满足齐次叠加原则,所以如果我们用移位脉冲序列来表示一个输入信号的话。系统的输出可以看成是每一个移位脉冲信号的输出信号的叠加。

时不变性即系统的特征不由时间的改变而改变,从数学上来说就是当输入序列为x[n-n0]输出信号就是y[n-n0]。

卷积

卷积是一种运算方式亦可以说是算子,这一运算可以被理解为对输入信号(序列)按照系统特征加权求和(离散)或加权求积(连续)。

我们先从离散时间卷积开始。
卷积
对于离散时间卷积,上述表达式可以看成,在i时刻序列x[n]输入系统H的所得到的系统响应。

初学信号与系统很容易出现的错误就是把x[n]与y[n]都看成一个数而非一个序列(只有序列才会涉及到时间轴)。

为什么在本文中一定要强调LTI系统,那是因为线性所以才符合齐次叠加原则,因为是时不变的所以i时刻的系统响应可以看成是h(n-i)。由此,卷积实际上描述了系统对于输入信号的一种运算方式。

这种方式直观的理解可以看成,序列x[n]在对系统H进行加权,输出结果是经过x[n]加权之后的序列y[n]。在LTI体系下,我们完全可以支持使用脉冲序列来理解这样一个过程。

这也就是序列x[n]从i时刻开始的每个值(i,i+1,i+2,…)乘以系统的冲击响应序列h[n]得到的所有加权序列的线性叠加的一个过程。

同理,用移位脉冲序列来解释这个过程的话。输入序列x[n]可以看成是在x[n]的加权规则下由一系列移位脉冲信号加权后线性叠加组成的。
在这里插入图片描述
显然上述表达式可以用以下形式表示(I[n]为冲击信号)
在这里插入图片描述
因此,在线性时不变的条件下,任何的信号都可以由一系列加权移位脉冲信号表示,同理系统的冲击响应也可以由一系列的加权移位脉冲信号表示。

不过,理解上存在难度的点,永远还是在于时间轴的存在,在LTI系统中我们不得不时时刻刻考虑时间轴。系统响应是随时间的推移改变的,所以x[n]序列的每个对应时刻的具体值就是那个时刻的权值,而那一时刻的系统响应就是待加权序列。

最终输出的序列是,所有时刻加权后的系统响应的线性叠加。
抽象卷积
上图描述了只在三个时刻有值的信号x[n]与系统H卷积的过程。因为 x[n]只在三个时刻有具体值,因此这里我们只需要看系统H在这三个时刻的脉冲响应h-1[n],h0[n]与h1[n]即可。接下来如同所示即是,计算x[-1]对h-1[n]的加权序列,x[0]对h0[n]的加权序列,x[1]对h1[n]的加权序列。再线性叠加即可得到卷积的输出结果。

总结

  1. 卷积是一种在LTI特性下的运算方式,用于表示系统对输入信号的运输,结果为输出信号。
  2. 卷积实际上是,基于输入信号x[n]在各个时刻的信号值(权值)对于系统h[n]在各个信号的响应序列进行加权,并且将全部时刻的加权序列线性叠加的一种运算方式。简而言之,卷积就是信号x[n]对系统响应进行加权。
  3. 离散时间卷积的算术表达式还可以解释为,在i时刻,信号x[n]输入进系统H所进行的运算。
    卷积
  • 7
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值