李沐深度学习-多项式函数拟合试验

d2lzh_pytorch模块跳转连接

import torch
import numpy as np
import sys

sys.path.append("路径")
import d2lzh_pytorch as d2l

'''
-----------------------------生成人工数据集
样本数n=200
特征数=3
三阶多项式y=1.2x-3.4x^2+5.6x^3+5+ε
'''
n_train, n_test, true_w, true_b = 100, 100, [1.2, -3.4, 5.6], 5
sample_features = torch.randn(n_train + n_test, 1)  # 200x1   单算的一个特征
poly_sample_features = torch.cat((sample_features, torch.pow(sample_features, 2), torch.pow(sample_features, 3)),
                                 dim=1)  # 组合成3个特征
# 因为poly_features取列的元素时,没有对列加[]限制,所以取出来的值不保有原来的维度,而是成为了一维张量,所以labels相应的也是一维张量
labels = true_w[0] * poly_sample_features[:, 0] + true_w[1] * poly_sample_features[:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值