代码随想录算法训练营第37天|完全背包基础、518.零钱兑换II、377. 组合总和 Ⅳ、70. 爬楼梯(进阶版)

完全背包基础

什么是完全背包

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

和01背包的区别

01背包和完全背包唯一不同就是体现在遍历顺序上

  • 01背包遍历背包容量需要倒序遍历
  • 完全背包遍历背包容量需要正序遍历
  • 01背包一定要先物品后背包
  • 完全背包:标准完全背包(求最大价值)无所谓
    • 求组合数:先物品后背包
    • 求排列数:先背包后物品
      (后续需要理解为什么)

518.零钱兑换II

题目链接:link

1、题目描述

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:
输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

2、思路

  • 重叠子问题: 当我们需要凑j元的时候,对于每一个硬币,有两种选择:“选或者不选 ”
    • 如果选这个硬币,我们需要凑 j − c o i n s [ i ] j-coins[i] jcoins[i]就好了(子问题)
    • 如果不选这个硬币,我们需要凑 j j j
  • 一看到钱币数量不限,就知道这是一个完全背包
  • 硬币就是物品,物品的重量为硬币的大小,问题不再是求装满物品的价值最大,而是组合最多,所以物品不需要价值属性了
  • 背包容量就是amount
  • dp[j] 代表凑j元的硬币组合数
  • dp[0] = 1 没有实际意义,主要是为了推导
  • d p [ j ] + = d p [ j − c o i n s [ i ] ] dp[j] += dp[j-coins[i]] dp[j]+=dp[jcoins[i]]
  • 循环顺序(求组合数):先物品后背包;物品从小到大,背包容量从大到小

3、code

class Solution:
    def change(self, amount: int, coins: List[int]) -> int:
        # 完全背包
        # dp[j] 代表凑j元的硬币组合数
        dp = [0] * (amount+1) # dp[5]
        dp[0] = 1 # 没有实际意义,主要是为了推导
        # 先遍历硬币
        for i in range(len(coins)):#[0,2]
            for j in range(coins[i],amount+1):#[coins[i],amount]
                dp[j] += dp[j-coins[i]]
        return dp[-1]

4、复杂度分析

1️⃣ 时间复杂度: O ( M × N ) O(M \times N) O(M×N)
2️⃣ 空间复杂度: O ( N ) O(N) O(N)

377. 组合总和 Ⅳ

题目链接:377. 组合总和 Ⅳ

1、题目描述

给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。

示例 1:
输入:nums = [1,2,3], target = 4
输出:7
解释:
所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
请注意,顺序不同的序列被视作不同的组合。

2、思路

  • 重叠子问题: 当我们需要凑总和 j j j的时候,对于每一个数,有两种选择:“选或者不选 ”
    • 如果选这个数,我们需要凑 j − n u m s [ i ] j-nums[i] jnums[i]就好了(子问题)
    • 如果不选这个数,我们需要凑 j j j
  • 一看到可以重复选同一个数,就知道这是一个完全背包
  • 数就是物品,物品的重量就是数值的大小,问题不再是求装满物品的价值最大,而是排列最多,所以物品不需要价值属性了
  • 背包容量就是amount
  • dp[j] 代表凑总和为 j j j的排列数
  • dp[0] = 1 没有实际意义,主要是为了推导
  • d p [ j ] + = d p [ j − c o i n s [ i ] ] dp[j] += dp[j-coins[i]] dp[j]+=dp[jcoins[i]]
  • 循环顺序(求排列数):先背包后物品;物品从小到大,背包容量从大到小

3、code

class Solution:
    def combinationSum4(self, nums: List[int], target: int) -> int:
        # 和零钱兑换的区别是,这道题有顺序的区别
        # dp[j]代表总和为j的元素组合个数
        dp = [0] * (target+1)
        dp[0] = 1
        # 求排列数就是先背包后物品
        for j in range(0,target+1):# j:0,1,2,3,4
            for i in range(len(nums)): # i : 0,1,2
                if j >= nums[i]:
                    dp[j] += dp[j - nums[i]]
        return dp[-1]

4、复杂度分析

1️⃣ 时间复杂度: O ( M × N ) O(M \times N) O(M×N)
2️⃣ 空间复杂度: O ( N ) O(N) O(N)

70. 爬楼梯(进阶版)

题目链接:link

1、题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

2、思路

  • 重叠子问题: 爬到第3阶台阶,可能是从第2,1爬上来的,也就是爬第2接台阶的方法加上爬第1阶台阶的方法
  • 并且爬台阶有顺序,所以是排列数
  • dp[j] 就是爬到第j阶台阶的方法数
  • 就是一个完全背包,求排列数的问题
  • dp[0] = 1 没有实际意义,主要是为了推导
  • d p [ j ] + = d p [ j − c o i n s [ i ] ] dp[j] += dp[j-coins[i]] dp[j]+=dp[jcoins[i]]
  • 循环顺序(求排列数):先背包后物品;物品从小到大,背包容量从大到小

3、code

n,m = map(int,input().split())
# 假设n = 3 , m =2
# 爬到第3阶台阶,可能是从第2,1爬上来的,也就是爬第2接台阶的方法加上爬第1阶台阶的方法
# 并且爬台阶有顺序,所以是排列数
# dp[j] 就是爬到第j阶台阶的方法数
dp = [0] * (n+1)

dp[0] = 1

for j in range(0,n+1):
    for i in range(1,m+1):
        dp[j] += dp[j-i]
print(dp[-1])

4、复杂度分析

1️⃣ 时间复杂度: O ( M × N ) O(M \times N) O(M×N)
2️⃣ 空间复杂度: O ( N ) O(N) O(N)

代码随想录算法训练营是一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练营中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练营还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练营中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14训练营中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练营还提供了每日的讨论知识点,例如在第15的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练营是一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练营每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郭小儒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值