目录
完全背包基础
什么是完全背包
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。
和01背包的区别
01背包和完全背包唯一不同就是体现在遍历顺序上
- 01背包遍历背包容量需要倒序遍历
- 完全背包遍历背包容量需要正序遍历
- 01背包一定要先物品后背包
- 完全背包:标准完全背包(求最大价值)无所谓
- 求组合数:先物品后背包
- 求排列数:先背包后物品
(后续需要理解为什么)
518.零钱兑换II
题目链接:link
1、题目描述
给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。
示例 1:
输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
2、思路
- 重叠子问题: 当我们需要凑j元的时候,对于每一个硬币,有两种选择:“选或者不选 ”
- 如果选这个硬币,我们需要凑 j − c o i n s [ i ] j-coins[i] j−coins[i]就好了(子问题)
- 如果不选这个硬币,我们需要凑 j j j
- 一看到钱币数量不限,就知道这是一个完全背包
- 硬币就是物品,物品的重量为硬币的大小,问题不再是求装满物品的价值最大,而是组合最多,所以物品不需要价值属性了
- 背包容量就是amount
- dp[j] 代表凑j元的硬币组合数
- dp[0] = 1 没有实际意义,主要是为了推导
- d p [ j ] + = d p [ j − c o i n s [ i ] ] dp[j] += dp[j-coins[i]] dp[j]+=dp[j−coins[i]]
- 循环顺序(求组合数):先物品后背包;物品从小到大,背包容量从大到小
3、code
class Solution:
def change(self, amount: int, coins: List[int]) -> int:
# 完全背包
# dp[j] 代表凑j元的硬币组合数
dp = [0] * (amount+1) # dp[5]
dp[0] = 1 # 没有实际意义,主要是为了推导
# 先遍历硬币
for i in range(len(coins)):#[0,2]
for j in range(coins[i],amount+1):#[coins[i],amount]
dp[j] += dp[j-coins[i]]
return dp[-1]
4、复杂度分析
1️⃣ 时间复杂度:
O
(
M
×
N
)
O(M \times N)
O(M×N)
2️⃣ 空间复杂度:
O
(
N
)
O(N)
O(N)
377. 组合总和 Ⅳ
题目链接:377. 组合总和 Ⅳ
1、题目描述
给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。
示例 1:
输入:nums = [1,2,3], target = 4
输出:7
解释:
所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
请注意,顺序不同的序列被视作不同的组合。
2、思路
- 重叠子问题: 当我们需要凑总和
j
j
j的时候,对于每一个数,有两种选择:“选或者不选 ”
- 如果选这个数,我们需要凑 j − n u m s [ i ] j-nums[i] j−nums[i]就好了(子问题)
- 如果不选这个数,我们需要凑 j j j
- 一看到可以重复选同一个数,就知道这是一个完全背包
- 数就是物品,物品的重量就是数值的大小,问题不再是求装满物品的价值最大,而是排列最多,所以物品不需要价值属性了
- 背包容量就是amount
- dp[j] 代表凑总和为 j j j的排列数
- dp[0] = 1 没有实际意义,主要是为了推导
- d p [ j ] + = d p [ j − c o i n s [ i ] ] dp[j] += dp[j-coins[i]] dp[j]+=dp[j−coins[i]]
- 循环顺序(求排列数):先背包后物品;物品从小到大,背包容量从大到小
3、code
class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
# 和零钱兑换的区别是,这道题有顺序的区别
# dp[j]代表总和为j的元素组合个数
dp = [0] * (target+1)
dp[0] = 1
# 求排列数就是先背包后物品
for j in range(0,target+1):# j:0,1,2,3,4
for i in range(len(nums)): # i : 0,1,2
if j >= nums[i]:
dp[j] += dp[j - nums[i]]
return dp[-1]
4、复杂度分析
1️⃣ 时间复杂度:
O
(
M
×
N
)
O(M \times N)
O(M×N)
2️⃣ 空间复杂度:
O
(
N
)
O(N)
O(N)
70. 爬楼梯(进阶版)
题目链接:link
1、题目描述
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
2、思路
- 重叠子问题: 爬到第3阶台阶,可能是从第2,1爬上来的,也就是爬第2接台阶的方法加上爬第1阶台阶的方法
- 并且爬台阶有顺序,所以是排列数
- dp[j] 就是爬到第j阶台阶的方法数
- 就是一个完全背包,求排列数的问题
- dp[0] = 1 没有实际意义,主要是为了推导
- d p [ j ] + = d p [ j − c o i n s [ i ] ] dp[j] += dp[j-coins[i]] dp[j]+=dp[j−coins[i]]
- 循环顺序(求排列数):先背包后物品;物品从小到大,背包容量从大到小
3、code
n,m = map(int,input().split())
# 假设n = 3 , m =2
# 爬到第3阶台阶,可能是从第2,1爬上来的,也就是爬第2接台阶的方法加上爬第1阶台阶的方法
# 并且爬台阶有顺序,所以是排列数
# dp[j] 就是爬到第j阶台阶的方法数
dp = [0] * (n+1)
dp[0] = 1
for j in range(0,n+1):
for i in range(1,m+1):
dp[j] += dp[j-i]
print(dp[-1])
4、复杂度分析
1️⃣ 时间复杂度:
O
(
M
×
N
)
O(M \times N)
O(M×N)
2️⃣ 空间复杂度:
O
(
N
)
O(N)
O(N)