设∠AOB=2α,∠BOC=2β,∠AOD=2γ,∠DOC=2(180°-α-β-γ),设圆O半径R
∴AB=2Rsinα,BC=2Rsinβ,AD=2Rsinγ,DC=2Rsin(180°-α-β-γ)
AC=2Rsin(α+β),BD=2Rsin(α+γ)
易知DC=2Rsin(α+β+γ)=2R[sin(α+β)cosγ+cos(α+β)sinγ]
∴DC·AB=4R²[sin(α+β)cosγsinα+cos(α+β)sinγsinα]
∴AC·BD=4R²[sin(α+β)sinαcosγ+sin(α+β)cosαsinγ]
设AB·DC+AD·BC≒AC·BD
∴4R²[cos(α+β)sinγsinα+sinβsinγ]≒4R²·sin(α+β)cosαsinγ
∴cos(α+β)sinα+sinβ≒sin(α+β)cosα
∴(cosαcosβ-sinαsinβ)sinα+sinβ≒(sinαcosβ-cosαsinβ)cosα
∴-sinαsinβsinα+1·sinβ≒cosαsinβcosα
∴sinβ(1-sin²α-cos²β)=0≒0
等式成立,得证AB·DC+AD·BC=AC·BD
和差角证明托勒密定理
最新推荐文章于 2025-03-28 09:10:45 发布