计算机图形学——二维图形变换&裁剪

算法描述

1.基本变换矩阵
(1).缩放矩阵
void ScaleMatrix(float Sx, float Sy, float m[3][2])
{
	for (int i = 0; i < 3; i++) {
		m[i][0] *= Sx;
		m[i][1] *= Sy;
	}
}
(2).旋转矩阵
void RotateMatrix(float S, float C, float m[3][2])
{
	float temp;
	for (int i = 0; i < 3; i++) {
		temp = m[i][0];
		m[i][0] = temp * C - m[i][1] * S;
		m[i][1] = temp * S + m[i][1] * C;
	}
}
(3).平移矩阵
void TranslateMatrix(float Tx, float Ty, float m[3][2])
{
	// 矩阵平移变换的位移量
	m[2][0] += Tx;
	m[2][1] += Ty;
}
2.Cohn-Sutherland直线裁剪算法

Cohn-Sutherland直线裁剪算法即对直线段p1(x1 ,y1)、p2(x2 ,y2)进行裁剪

1.基本思想:对每条直线段p1(x1,y1)p2(x2,y2)分三种情况处理
  • 直线段完全可见,“简取”之。

  • 直线段完全不可见,“简弃”之。

  • 直线段既不满足“简取”的条件,也不满足“简弃”的条件,需要对直线段按交点进行分段,分段后重复上述处理。

2 编码方法

编码: 对于任一端点(x,y),根据其坐标所在的区域,赋予一个4位的二进制码D3D2D1D0。

编码规则如下:

  1. 若x<wxl,则D0=1,否则D0=0;
  2. 若x>wxr,则D1=1,否则D1=0;
  3. 若y<wyb,则D2=1,否则D2=0;
  4. 若y>wyt,则D3=1,否则D3=0。

裁剪一条线段时,先求出端点p1和p2的编码 code1和code2,然后:

  • 若code1|code2=0,对直线段应简取之。
  • 若code1&code2≠0,对直线段可简弃之。
  • 若上述两条件均不成立。则需求出直线段与窗口边界的交点。在交点处把线段一分为二, 其中必有一段完全在窗口外,可以弃之。再对另一段重复进行上述处理,直到该线段完全被舍弃或者找到位于窗口内的一段线段为止。
3.具体做法:

按左、下、右、上的顺序求出直线段与窗口边界的交点,分段处理

例:对于直线段P1P2

  • 求出P1P2与左边界有实交点P3,一分为二,简弃直线段P1P3,处理P2P3
  • 求出P2P3与下边界的实交点P4,一分为二,简弃P2P4,剩下的P3P4可以简取。
3. Liang-Barsky直线裁剪算法:

任意直线段I(X1 ,Y1)J(X2 ,Y2 )的参数方程:

x=x1+u•(x2 -x1)
y=y1+u•(y2 -y1)
(0 ≤ u ≤ 1)

给定裁剪窗口,如果任一点在窗口内则:

wxl≤ x1+u•(x2 -x1 )≤ wxr
wyb≤y1+u•(y2 -y1 ) ≤ wyt

u•(x1 -x2 )≤ x1 – wxl 左边界
u•(x2 -x1 )≤ wxr – x1 右边界
u•(y1 -y2 )≤ y1 – wyb 下边界
u•(y2 -y1 ) ≤ wyt – y1 上边界

(u•pk≤qk ,k=1,2,3,4)

令:
p1 = x1 -x2
p2 = x2 -x1
p3 = y1 -y2
p4 = y2 -y1

q1 = x1 – wxl
q2 = wxr – x1
q3 = y1 – wyb
q4 = wyt – y1
(u•pk≤qk,其中:k=1,2,3,4)

  • 取“=”时求得的u对应的是直线不窗口边界的交点
  • 1、2、3、4分别对应左、右、下、上边界
  • u=0和1时分别对应直线的起点和终点
    Uone=max(0,uk|pk<0,uk|pk<0)
    Utwo=min(1,uk|pk>0,uk|pk>0)

例如: 对于IJ P1、P4小于0 Uone在0、u1、u4取大者 P2、P3大于0 Utwo在1、u2、u3取小者
限制条件: 如果Uone≤ Utwo取可求得两端点

4. Sutherland-Hodgman多边形裁剪算法
1.基本思想:一次用窗口的一条边来裁剪多边形。

算法的输入是以顶点序列表示的多边形,输出也是一个顶点序列,这些顶点能够构成一个或多个多边形。

处理对象: 任意凸多边形。

窗口的任意一条边的所在直线(裁剪线)把窗口所在平面分成两部分

  • 可见一侧:包含窗口那部分
  • 不可见一侧:不包含窗口那部分
2. 算法说明:

1、已知:多边形顶点数组src,顶点个数n,定义新多边形顶点数组dest。

2、赋初值:用变量flag来标识:0表示在内侧,1表示在外侧。

3、对多边形的n条边进行处理,对当前点号的考虑为:0~n-1。

for(i=0;i<n;i++)
{
  if(当前第i个顶点是否在边界内侧?)
  {
    if(flag!=0) /*前一个点在外侧吗?*/
    {
      flag=0/*从外到内的情况,将标志置0,作为下一次循环的前一点标志*/
      (dest + j) =求出交点; /*将交点dest放入新多边形*/
           j++}
      (dest + j)= (src + i)/*将当前点srci放入新多边形*/
       j++}
	else 
	{
		if(flag==0) /*前一个点在内侧吗?*/
    	{
      flag=1/*从内到外的情况,将标志置1,作为下一次循环的前一点标志*/
      (dest + j) =求出交点; /*将交点dest放入新多边形*/
           j++}
	}
	s= (src + i)/*将当前点作为下次循环的前一点*/
}
3.算法特点:

Sutherland-Hodgeman多边形裁剪算法具有一般性,被裁剪多边形可以是任意凸多边形,裁剪窗口不局限于矩形。

上面的算法是多边形相对窗口的一条边界进行裁剪的实现,对于窗口的每一条边界依次调用该算法程序,并将前一次裁剪的结果多边形作为下一次裁剪时的被裁剪多边形,即可得到完整的多边形裁剪程序。

5. Weiler-Atherton多边形裁剪算法
一.Weiler-Atherton任意多边形裁剪算法思想:

假设被裁剪多边形和裁剪窗口的顶点序列都按顺时针方向排列。当两个多边形相交时,交点必然成对出现,其中一个是从被裁剪多边形进入裁剪窗口的交点,称为“入点”,另一个是从被裁剪多边形离开裁剪窗口的交点,称为“出点”。算法从被裁剪多边形的一个入点开始,碰到入点,沿着被裁剪多边形按顺时针方向搜集顶点序列;而当遇到出点时,则沿着裁剪窗口按顺时针方向搜集顶点序列。按上述规则,如此交替地沿着两个多边形的边线行进,直到回到起始点。这时,收集到的全部顶点序列就是裁剪所得的一个多边形。由于可能存在分裂的多边形,因此算法要考虑:将搜集过的入点的入点记号删去,以免重复跟踪。将所有的入点搜集完毕后算法结束。

二.Weiler-Atherton任意多边形裁剪算法步骤:
  1. 顺时针输入被裁剪多边形顶点序列Ⅰ放入数组1中。
  2. 顺时针输入裁剪窗口顶点序列Ⅱ放入数组2中。
  3. 求出被裁剪多边形和裁剪窗口相交的所有交点,并给每个交点打上“入”、“出”标记。 然后将交点按顺序插入序列Ⅰ得到新的顶点序列Ⅲ,并放入数组3中; 同样也将交点按顺序插入序列Ⅱ得到新的顶点序列Ⅳ,放入数组4中;
  4. 初始化输出数组Q,令数组Q为空。接着从数组3中寻找“入”点。如果“入”点没找到,程序结束。
  5. 如果找到“入”点,则将“入”点放入S中暂存。
  6. 将“入”点录入到输出数组Q中。并从数组3中将该“入”点的“入”点标记删去。
  7. 沿数组3顺序取顶点:如果顶点不是“出点”,则将顶点录入到输出数组Q中,流程转第7步。否则,流程转第8步。
  8. 沿数组4顺序取顶点:如果顶点不是“入点”,则将顶点录入到输出数组Q中,流程转第8步。否则,流程转第9步。
  9. 如果顶点不等于起始点S,流程转第6步,继续跟踪数组3。否则,将数组Q输出;流程转第4步,寻找可能存在的分裂多边形。算法在第4步:满足“入”点没找到的条件时,算法结束。算法的生成过程见下图所示。
三.Weiler-Atherton任意多边形裁剪算法特点:
  1. 裁剪窗口可以是矩形、任意凸多边形、任意凹多边形。
  2. 可实现被裁剪多边形相对裁剪窗口的内裁或外裁,即保留窗口内的图形或保留窗口外的图形,因此在三维消隐中可以用来处理物体表面间的相互遮挡关系。3、裁剪思想新颖,方法简洁,裁剪一次完成,与裁剪窗口的边数无关。

源码参考(C++)

1.基本变换矩阵
//计算变换矩阵
void CalculateMatrix(float transMatrix[3][2])
{
	Ccg2DTransDoc* pDoc = GetDocument();

	switch (pDoc->m_transDir) {
	case 0: // -X
		switch (pDoc->m_transMode) {
		case 0: // Move
			TranslateMatrix(-DELTAX, 0, transMatrix);
			break;
		case 1: // rotate
			RotateMatrix(-sin(DELTATHETA), cos(DELTATHETA), transMatrix);
			break;
		case 2: // Scale
			ScaleMatrix(SSCALEX, 1, transMatrix);
			break;
		}
		break;
	case 1: // +X
		switch (pDoc->m_transMode) {
		case 0: // Move
			TranslateMatrix(DELTAX, 0, transMatrix);
			break;
		case 1: // rotate
			RotateMatrix(sin(DELTATHETA), cos(DELTATHETA), transMatrix);
			break;
		case 2: // Scale
			ScaleMatrix(LSCALEX, 1, transMatrix);
			break;
		}
		break;
	case 2: // -Y
		switch (pDoc->m_transMode) {
		case 0: // Move
			TranslateMatrix(0, -DELTAY, transMatrix);
			break;
		case 1: // rotate
			RotateMatrix(-sin(DELTATHETA), cos(DELTATHETA), transMatrix);
			break;
		case 2: // Scale
			ScaleMatrix(1, SSCALEY, transMatrix);
			break;
		}
		break;
	case 3: // +Y
		switch (pDoc->m_transMode) {
		case 0: // Move
			TranslateMatrix(0, DELTAY, transMatrix);
			break;
		case 1: // rotate
			RotateMatrix(sin(DELTATHETA), cos(DELTATHETA), transMatrix);
			break;
		case 2: // Scale
			ScaleMatrix(1, LSCALEY, transMatrix);
			break;
		}
		break;
	}
}
//缩放矩阵
void Ccg2DTransView::ScaleMatrix(float Sx, float Sy, float m[3][2])
{
	for (int i = 0; i < 3; i++) {
		m[i][0] *= Sx;
		m[i][1] *= Sy;
	}
}
//旋转矩阵
void RotateMatrix(float S, float C, float m[3][2])
{
	float temp;
	for (int i = 0; i < 3; i++) {
		temp = m[i][0];
		m[i][0] = temp * C - m[i][1] * S;
		m[i][1] = temp * S + m[i][1] * C;
	}
}
//平移矩阵
void TranslateMatrix(float Tx, float Ty, float m[3][2])
{
	// 矩阵平移变换的位移量
	m[2][0] += Tx;
	m[2][1] += Ty;
}
2.绘制直线
//绘制直线
void DisplayLine(CDC* pDC, CPoint p1, CPoint p2, COLORREF rgbColor)
{
	CcgTransDoc* pDoc = GetDocument();

	CPen newPen;
	CPen* oldPen;
	CPoint VP1, VP2;

	newPen.CreatePen(PS_SOLID, 2, rgbColor);
	oldPen = (CPen*)pDC->SelectObject(&newPen);

	VP1.x = m_wndWidth / 2 + p1.x;
	VP1.y = m_wndHeight / 2 - p1.y;
	VP2.x = m_wndWidth / 2 + p2.x;
	VP2.y = m_wndHeight / 2 - p2.y;

	pDC->MoveTo(VP1);
	pDC->LineTo(VP2);

	pDC->SelectObject(oldPen);
	newPen.DeleteObject();
}
3.直线2D变换
//直线2D变换
void TransLine(CPoint p1, CPoint p2, CPoint* tp1, CPoint* tp2, float transMatrix[3][2])
{
	// 更改移动后的线段端点坐标p1, p2,利用矩阵乘法(x,y,1) * transMatrix[3][2]
	tp1->x = p1.x * transMatrix[0][0] +
			 p1.y * transMatrix[1][0] +
		            transMatrix[2][0];
	tp1->y = p1.x * transMatrix[0][1] +
			 p1.y * transMatrix[1][1] +
					transMatrix[2][1];
	tp2->x = p2.x * transMatrix[0][0] +
			 p2.y * transMatrix[1][0] +
					transMatrix[2][0];
	tp2->y = p2.x * transMatrix[0][1] +
			 p2.y * transMatrix[1][1] +
					transMatrix[2][1];
}
  • 7
    点赞
  • 43
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
计算机图形学——几何工具算法详解》PDF是一本关于计算机图形学的书籍,主要介绍了图形学中的几何工具算法。 该书详细解析了计算机图形学中的几何工具算法,涵盖了从基础知识到高级算法的内容。首先,书中介绍了计算机图形学的基本概念和原理,包括图形学的历史背景、矢量、二维坐标系和三维坐标系等基础知识。然后,书中详细介绍了几何变换算法,包括平移、旋转、缩放等操作对图形的影响及其在计算机图形学中的应用。此外,还介绍了曲线和曲面的绘制算法,如贝塞尔曲线、B样条曲线和NURBS曲面等,以及相关算法的实现方法。另外,书中还详细阐述了光照和着色算法,包括光照模型、阴影生成和着色技术等。 《计算机图形学——几何工具算法详解》PDF书籍内容丰富、详细,适合计算机图形学领域的学习者和研究者阅读。通过学习该书,读者可以系统地了解计算机图形学的几何工具算法,掌握图形学中的基本概念和实际应用技术。此外,书中还提供了大量的实例和案例,有助于读者将理论知识应用到实际问题解决中。 总之,通过阅读《计算机图形学——几何工具算法详解》PDF,读者可以深入了解计算机图形学的几何工具算法,掌握相关的基本概念和实际应用技术,对计算机图形学领域有更深入的认识和理解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值