【算法提高:动态规划】1.2 最长上升子序列模型(TODO最长公共上升子序列)

题目列表

1017. 怪盗基德的滑翔翼

https://www.acwing.com/problem/content/1019/
在这里插入图片描述
注意 基德 可以从任意地方开始选择向左或向右出发。
所以需要 dp 两次。

import java.io.BufferedInputStream;
import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner sin = new Scanner(new BufferedInputStream(System.in));
        int k = sin.nextInt();
        while (k-- != 0) {
            int n = sin.nextInt(), ans = 1;
            int[] a = new int[n], dp = new int[n];
            Arrays.fill(dp, 1);
            for (int i = 0; i < n; ++i) {
                a[i] = sin.nextInt();
                for (int j = 0; j < i; ++j) {
                    if (a[i] < a[j]) dp[i] = Math.max(dp[i], dp[j] + 1);
                }
                ans = Math.max(ans, dp[i]);
            }
            Arrays.fill(dp, 1);
            for (int i = n - 1; i >= 0; --i) {
                for (int j = n - 1; j > i; --j) {
                    if (a[i] < a[j]) dp[i] = Math.max(dp[i], dp[j] + 1);
                }
                ans = Math.max(ans, dp[i]);
            }
            System.out.println(ans);
        }
    }
}

1014. 登山

https://www.acwing.com/problem/content/1016/
在这里插入图片描述
因为一旦开始向下走之后就不会再往上走了。

所以向上走的状态只能从向上走的状态转移过来;向下走的状态既能从向上走的状态转移过来,也可以从向下走的状态转移过来。

import java.io.BufferedInputStream;
import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner sin = new Scanner(new BufferedInputStream(System.in));
        int n = sin.nextInt();
        int[] a = new int[n];
        for (int i = 0; i < n; ++i) a[i] = sin.nextInt();
        int[][] dp = new int[n][2];
        int ans = 1;
        for (int i = 0; i< n; ++i) {
            dp[i][0] = dp[i][1] = 1;
            for (int j = 0; j < i; ++j) {
                if (a[i] > a[j]) {
                    dp[i][0] = Math.max(dp[i][0], dp[j][0] + 1);
                }
                else if (a[i] < a[j]) {
                    dp[i][1] = Math.max(dp[i][1], Math.max(dp[j][0], dp[j][1]) + 1);
                }
            }
            ans = Math.max(ans, Math.max(dp[i][0], dp[i][1]));
        }
        System.out.println(ans);
    }
}

482. 合唱队形

https://www.acwing.com/problem/content/484/
在这里插入图片描述
计算每个节点作为结尾位置时向左和向右的递减子序列的最长长度即可。

注意最后要求的答案是需要几位同学出列 而不是 最多保留几位同学。

import java.io.BufferedInputStream;
import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner sin = new Scanner(new BufferedInputStream(System.in));
        int n = sin.nextInt();
        int[] t = new int[n];
        for (int i = 0; i < n; ++i) t[i] = sin.nextInt();
        int[][] dp = new int[n][2];
        for (int i = 0; i < n; ++i) {
            dp[i][0] = dp[i][1] = 1;
            for (int j = 0; j < i; ++j) {
                if (t[i] > t[j]) dp[i][0] = Math.max(dp[i][0], dp[j][0] + 1);
            }
        }
        int ans = 1;
        for (int i = n - 1; i >= 0; --i) {
            for (int j = n - 1; j > i; --j) {
                if (t[i] > t[j]) dp[i][1] = Math.max(dp[i][1], dp[j][1] + 1);
            }
            ans = Math.max(ans, dp[i][0] + dp[i][1] - 1);
        }
        System.out.println(n - ans);
    }
}

1012. 友好城市(⭐排序后 最长上升子序列模型)

https://www.acwing.com/problem/content/1014/

在这里插入图片描述

按照一岸排序,求另一岸此时的最长递增子序列。

import java.io.BufferedInputStream;
import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner sin = new Scanner(new BufferedInputStream(System.in));
        int n = sin.nextInt();
        int[][] a = new int[n][2];
        for (int i = 0; i < n; ++i) {
            a[i][0] = sin.nextInt();
            a[i][1] = sin.nextInt();
        }
        // 按照一岸排序
        Arrays.sort(a, (x, y) -> x[0] - y[0]);
        // 求另一岸此时的最长递增子序列
        int ans = 0;
        int[] dp = new int[n];
        Arrays.fill(dp, 1);
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (a[i][1] > a[j][1]) dp[i] = Math.max(dp[i], dp[j] + 1);
            }
            ans = Math.max(ans, dp[i]);
        }
        System.out.println(ans);
    }
}

1016. 最大上升子序列和

https://www.acwing.com/problem/content/1018/

在这里插入图片描述

跟最长上升子序列长度的方法差不多,只修改了递推公式部分,将 + 1 修改成了 + a[i]。

import java.io.BufferedInputStream;
import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner sin = new Scanner(new BufferedInputStream(System.in));
        int n = sin.nextInt();
        int[] a = new int[n];
        for (int i = 0; i < n; ++i) a[i] = sin.nextInt();
        int[] dp = new int[n];
        Arrays.setAll(dp, i -> a[i]);
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (a[i] > a[j]) {
                    dp[i] = Math.max(dp[i], dp[j] + a[i]);
                }
            }
            ans = Math.max(ans, dp[i]);
        }
        System.out.println(ans);
    }
}

1010. 拦截导弹

https://www.acwing.com/problem/content/1012/

在这里插入图片描述
使用最长上升子序列模型解决问题1。(对于这题是个最长递减子序列)。

对于问题2,当一个新的导弹来临时,我们首先检查是否有已经存在的系统可以拦截它。如果可以,我们应该选择一个能够拦截这个新来的导弹并且当前最高高度最低的系统来拦截它
结论:从上面的贪心可以推出来,是在求最长上升子序列。

解法1——最长递减子序列 + 贪心

import java.io.BufferedInputStream;
import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner sin = new Scanner(new BufferedInputStream(System.in));
        final int N = 1001;
        int[] a = new int[N], dp = new int[N];
        int n = 0;
        while (sin.hasNext()) {
            a[n++] = sin.nextInt();
        }

        // 使用动态规划求解最多能拦截的导弹数
        int ans1 = 0;
        Arrays.fill(dp, 1);
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (a[i] <= a[j]) {
                    dp[i] = Math.max(dp[i], dp[j] + 1);
                }
            }
            ans1 = Math.max(ans1, dp[i]);
        }
        System.out.println(ans1);
		
		// 贪心
        List<Integer> ls = new ArrayList<>();
        for (int i = 0; i < n; ++i) {
            int k = 0;
            while (k < ls.size() && ls.get(k) < a[i]) k++;
            if (k >= ls.size()) ls.add(a[i]);
            else ls.set(k, a[i]);
        }
        System.out.println(ls.size());
    }
}

解法2——最长递减子序列 + 最长递增子序列(⭐贪心结论)

import java.io.BufferedInputStream;
import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner sin = new Scanner(new BufferedInputStream(System.in));
        final int N = 1001;
        int[] a = new int[N], dp = new int[N], dp2 = new int[N];
        int n = 0;
        while (sin.hasNext()) {
            a[n++] = sin.nextInt();
        }
		
		// 不递增和递增子序列的最大长度
        int ans1 = 0, ans2 = 0;
        Arrays.fill(dp, 1);
        Arrays.fill(dp2, 1);
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (a[i] <= a[j]) {
                    dp[i] = Math.max(dp[i], dp[j] + 1);
                } else dp2[i] = Math.max(dp2[i], dp2[j] + 1);
            }
            ans1 = Math.max(ans1, dp[i]);
            ans2 = Math.max(ans2, dp2[i]);
        }
        System.out.println(ans1 + "\n" + ans2);
    }
}

187. 导弹防御系统⭐⭐⭐⭐⭐(至少需要多少个 上升/下降 子序列)(dfs + 最少需要多少最长上升子序列)⭐⭐⭐⭐⭐

https://www.acwing.com/problem/content/189/

在这里插入图片描述
注意数据范围是 50 比较小。

在上一题的代码框架基础上 增加一个 dfs 爆搜。

import java.io.BufferedInputStream;
import java.util.*;

public class Main {
    final static int N = 52;
    static int[] q = new int[N], up = new int[N], down = new int[N];
    static int ans = 0, n = 0;

    public static void main(String[] args) {
        Scanner sin = new Scanner(new BufferedInputStream(System.in));
        while (true) {
            n = sin.nextInt();
            if (n == 0) return;
            ans = 0;
            dfs(0, 0, 0);
            System.out.println(ans);
        }
    }

    // u,su,sd 表示枚举到了第一个数,当前上升子序列的个数,当前下降子序列的个数
    static void dfs(int u, int su, int sd) {
        if (su + sd >= ans) return;
        if (u == n) {
            ans = su + sd;
            return;
        }

        // 情况1:将当前数放到上升子序列中
        int k = 0;
        while (k < su && up[k] >= q[u]) k++;
        int t = up[k];
        up[k] = q[u];
        if (k < su) dfs(u + 1, su, sd);
        else dfs(u + 1, su + 1, sd);
        up[k] = t;      // 恢复现场

        // 情况2:将当签署放到下降子序列中
        k = 0;
        while (k < sd && down[k] <= q[u]) k++;
        t = down[k];
        down[k] = q[u];
        if (k < sd) dfs(u + 1, su, sd);
        else dfs(u + 1, su, sd + 1);
        down[k] = t;
    }
}

Q:为什么不用 bfs 来求解?
A:因为 bfs 需要的空间太大,可能会爆炸。(bfs 存一层,dfs 存一个路径)。

272. 最长公共上升子序列⭐⭐⭐⭐⭐🚹🚹🚹🚹🚹TODO

https://www.acwing.com/problem/content/274/

在这里插入图片描述

解法1——一起计算⭐⭐⭐⭐⭐TODO

dp[i][j] 表示 两个数组 0 ~ i 和 0 ~ j 之间的 且以 b[j] 为结尾的 最长公共上升子序列长度。

import java.io.BufferedInputStream;
import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner sin = new Scanner(new BufferedInputStream(System.in));
        int n = sin.nextInt();
        int[] a = new int[n], b = new int[n];
        for (int i = 0; i < n; ++i) a[i] = sin.nextInt();
        for (int i = 0; i < n; ++i) b[i] = sin.nextInt();

        // dp[i][j] 表示 两个数组 0 ~ i 和 0 ~ j 之间的最长公共上升子序列长度。
        int[][] dp = new int[n + 1][n + 1];
        for (int i = 1; i <= n; ++i) {
            int maxV = 1;      // 可以上升的长度
            for (int j = 1; j <= n; ++j) {
                dp[i][j] = dp[i - 1][j];
                if (a[i - 1] == b[j - 1]) dp[i][j] = Math.max(dp[i][j], maxV);  	// 相等,是公共子序列
                if (b[j - 1] < a[i - 1]) maxV = Math.max(maxV, dp[i - 1][j] + 1);	// 更新可以上升的长度
            }
        }
        int ans = Arrays.stream(dp[n]).max().getAsInt();
        System.out.println(ans);
    }
}

解法2——先求最长公共子序列,再求最长上升子序列长度❌(错误解法!)

比如
1 2 3 9 8 7 6 5 4序列

9 8 7 6 5 4 1 2 3 序列
筛选出的最长公共子序列应该是9 8 7 6 5 4,但是我们需要的最长公共上升子序列应该是 1 2 3

所以最长公共上升子序列并不一定在 最长公共子序列当中,它可能会在某个比较短的公共子序列当中。

补充相关题目列表

673. 最长递增子序列的个数

https://leetcode.cn/problems/number-of-longest-increasing-subsequence/description/
在这里插入图片描述

class Solution {
    public int findNumberOfLIS(int[] nums) {
        int n = nums.length, mxL = 1, ans = 0;
        int[] dp = new int[n], cnt = new int[n];
        Arrays.fill(dp, 1);
        Arrays.fill(cnt, 1);
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (nums[i] > nums[j]) {
                    if (dp[j] + 1 > dp[i]) {
                        dp[i] = dp[j] + 1;
                        cnt[i] = cnt[j];
                    } else if (dp[j] + 1 == dp[i]) {
                        cnt[i] += cnt[j];
                    }
                }
            }
            mxL = Math.max(mxL, dp[i]);
        }
        for (int i = 0; i < n; ++i) {
            if (dp[i] == mxL) ans += cnt[i];
        }
        return ans;
    }
}

115. 不同的子序列

https://leetcode.cn/problems/distinct-subsequences/description/

在这里插入图片描述
提示:

1 <= s.length, t.length <= 1000
s 和 t 由英文字母组成

class Solution {
    public int numDistinct(String s, String t) {
        int m = s.length(), n = t.length();
        // dp[i][j] 表示考虑s从0~i-1的子序列中,以t[0:j]出现的次数(注意这里j就表示j-1结尾了,i表示考虑0~i-1)
        int[][] dp = new int[m + 1][n + 1];
        for (int i = 0; i <= m; ++i) dp[i][0] = 1;      // s[0:i-1]中出现""的次数是1
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                dp[i][j] = dp[i - 1][j];                // 至少也和 i - 1 一样
                // 如果一样,说明当前i-1可以匹配到j-1结尾,从i-1,j-1转移过来
                // 转移是 + ,因为求的是出现的个数:i-1匹配到了说明出现了新一批匹配完全的s中以i-1为结尾和t[0:j]匹配上的子序列
                if (s.charAt(i - 1) == t.charAt(j - 1)) dp[i][j] += dp[i - 1][j - 1];
            }
        }
        return dp[m][n];
    }
}

相关链接

【算法】最长递增子序列:动态规划&贪心+二分查找

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wei *

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值