重要性质:
g c d ( a , b ) = g c d ( b , a ) gcd(a,b)=gcd(b,a) gcd(a,b)=gcd(b,a)(交换律)
g c d ( − a , b ) = g c d ( a , b ) gcd(-a,b)=gcd(a,b) gcd(−a,b)=gcd(a,b)
g c d ( a , a ) = ∣ a ∣ gcd(a,a)=|a| gcd(a,a)=∣a∣
g c d ( a , 0 ) = ∣ a ∣ gcd(a,0)=|a| gcd(a,0)=∣a∣
g c d ( a , 1 ) = 1 gcd(a,1)=1 gcd(a,1)=1
g c d ( a , b ) = g c d ( b , a m o d b ) gcd(a,b)=gcd(b, a \ mod \ b) gcd(a,b)=gcd(b,a mod b)
g c d ( a , b ) = g c d ( b , a − b ) gcd(a,b)=gcd(b, a-b) gcd(a,b)=gcd(b,a−b)
如果有附加的一个自然数m,
则: g c d ( m a , m b ) = m ∗ g c d ( a , b ) gcd(ma,mb)=m * gcd(a,b) gcd(ma,mb)=m∗gcd(a,b) (分配律)
g c d ( a + m b , b ) = g c d ( a , b ) gcd(a+mb ,b)=gcd(a,b) gcd(a+mb,b)=gcd(a,b)
如果m是a和b的最大公约数,
则: g c d ( a / m , b / m ) = g c d ( a , b ) / m gcd(a/m ,b/m)=gcd(a,b)/m gcd(a/m,b/m)=gcd(a,b)/m
在乘法函数中有:
g c d ( a b , m ) = g c d ( a , m ) ∗ g c d ( b , m ) gcd(ab,m)=gcd(a,m) * gcd(b,m) gcd(ab,m)=gcd(a,m)∗gcd(b,m)
两个整数的最大公约数主要有两种寻找方法:
- 两数各分解质因数,然后取出同样有的质因数乘起来
*辗转相除法(扩展版)
和最小公倍数(lcm)的关系:
g c d ( a , b ) ∗ l c m ( a , b ) = a b gcd(a, b) * lcm(a, b) = ab gcd(a,b)∗lcm(a,b)=ab
a与b有最大公约数,
两个整数的最大公因子可用于计算两数的最小公倍数,或分数化简成最简分数。
两个整数的最大公因子和最小公倍数中存在分配律:
* g c d ( a , l c m ( b , c ) ) = l c m ( g c d ( a , b ) , g c d ( a , c ) ) gcd(a, lcm(b, c)) = lcm(gcd(a, b), gcd(a, c)) gcd(a,lcm(b,c))=lcm(gcd(a,b),gcd(a,c))
* l c m ( a , g c d ( b , c ) ) = g c d ( l c m ( a , b ) , l c m ( a , c ) ) lcm(a, gcd(b, c)) = gcd(lcm(a, b), lcm(a, c)) lcm(a,gcd(b,c))=gcd(lcm(a,b),lcm(a,c))
在 坐 标 里 , 将 点 ( 0 , 0 ) 和 ( a , b ) 连 起 来 , 通 过 整 数 坐 标 的 点 的 数 目 ( 除 了 ( 0 , 0 ) 一 点 之 外 ) 就 是 g c d ( a , b ) 。 在坐标里,将点(0, 0)和(a, b)连起来,通过整数坐标的点的数目(除了(0, 0)一点之外)就是gcd(a, b)。 在坐标里,将点(0,0)和(a,b)连起来,通过整数坐标的点的数目(除了(0,0)一点之外)就是gcd(a,b)。
以上转自 百度百科。
更一般的推论:
g
c
d
(
A
,
B
)
=
1
gcd(A, B) = 1
gcd(A,B)=1
=
>
=>
=>
gcd
(
A
m
−
B
m
,
A
n
−
B
n
)
=
A
g
c
d
(
m
,
n
)
−
B
g
c
d
(
m
,
n
)
\ \ \ \ \ \ \ \ \ \gcd(A^m - B^m,A^n - B^n)= A^{gcd(m,n)} - B^{gcd(m,n)}
gcd(Am−Bm,An−Bn)=Agcd(m,n)−Bgcd(m,n)
- 若 a ∗ c ≡ b ∗ c ( m o d p ) , g c d ( c , p ) = d , 则 a ≡ b ( m o d p d ) a∗c≡b∗c (mod \ p),gcd(c,p)=d,则a≡b (mod \dfrac{p}{d}) a∗c≡b∗c(mod p),gcd(c,p)=d,则a≡b(moddp)