最大公约数的性质

重要性质:

g c d ( a , b ) = g c d ( b , a ) gcd(a,b)=gcd(b,a) gcd(a,b)=gcd(b,a)(交换律)

g c d ( − a , b ) = g c d ( a , b ) gcd(-a,b)=gcd(a,b) gcd(a,b)=gcd(a,b)

g c d ( a , a ) = ∣ a ∣ gcd(a,a)=|a| gcd(a,a)=a

g c d ( a , 0 ) = ∣ a ∣ gcd(a,0)=|a| gcd(a,0)=a

g c d ( a , 1 ) = 1 gcd(a,1)=1 gcd(a,1)=1

g c d ( a , b ) = g c d ( b , a   m o d   b ) gcd(a,b)=gcd(b, a \ mod \ b) gcd(a,b)=gcd(b,a mod b)

g c d ( a , b ) = g c d ( b , a − b ) gcd(a,b)=gcd(b, a-b) gcd(a,b)=gcd(b,ab)

如果有附加的一个自然数m,

则: g c d ( m a , m b ) = m ∗ g c d ( a , b ) gcd(ma,mb)=m * gcd(a,b) gcd(ma,mb)=mgcd(a,b) (分配律)

g c d ( a + m b , b ) = g c d ( a , b ) gcd(a+mb ,b)=gcd(a,b) gcd(a+mb,b)=gcd(a,b)

如果m是a和b的最大公约数,

则: g c d ( a / m , b / m ) = g c d ( a , b ) / m gcd(a/m ,b/m)=gcd(a,b)/m gcd(a/m,b/m)=gcd(a,b)/m

在乘法函数中有:

g c d ( a b , m ) = g c d ( a , m ) ∗ g c d ( b , m ) gcd(ab,m)=gcd(a,m) * gcd(b,m) gcd(ab,m)=gcd(a,m)gcd(b,m)

两个整数的最大公约数主要有两种寻找方法:

  • 两数各分解质因数,然后取出同样有的质因数乘起来

*辗转相除法(扩展版)

和最小公倍数(lcm)的关系:

g c d ( a , b ) ∗ l c m ( a , b ) = a b gcd(a, b) * lcm(a, b) = ab gcd(a,b)lcm(a,b)=ab

a与b有最大公约数,

两个整数的最大公因子可用于计算两数的最小公倍数,或分数化简成最简分数。

两个整数的最大公因子和最小公倍数中存在分配律:

* g c d ( a , l c m ( b , c ) ) = l c m ( g c d ( a , b ) , g c d ( a , c ) ) gcd(a, lcm(b, c)) = lcm(gcd(a, b), gcd(a, c)) gcd(a,lcm(b,c))=lcm(gcd(a,b),gcd(a,c))

* l c m ( a , g c d ( b , c ) ) = g c d ( l c m ( a , b ) , l c m ( a , c ) ) lcm(a, gcd(b, c)) = gcd(lcm(a, b), lcm(a, c)) lcm(a,gcd(b,c))=gcd(lcm(a,b),lcm(a,c))

在 坐 标 里 , 将 点 ( 0 , 0 ) 和 ( a , b ) 连 起 来 , 通 过 整 数 坐 标 的 点 的 数 目 ( 除 了 ( 0 , 0 ) 一 点 之 外 ) 就 是 g c d ( a , b ) 。 在坐标里,将点(0, 0)和(a, b)连起来,通过整数坐标的点的数目(除了(0, 0)一点之外)就是gcd(a, b)。 (0,0)(a,b)(0,0)gcd(a,b)

以上转自 百度百科。

在这里插入图片描述
更一般的推论: g c d ( A , B ) = 1 gcd(A, B) = 1 gcd(A,B)=1 = > => =>
          gcd ⁡ ( A m − B m , A n − B n ) = A g c d ( m , n ) − B g c d ( m , n ) \ \ \ \ \ \ \ \ \ \gcd(A^m - B^m,A^n - B^n)= A^{gcd(m,n)} - B^{gcd(m,n)}          gcdAmBmAnBn=Agcd(mn)Bgcd(mn)

  • a ∗ c ≡ b ∗ c ( m o d   p ) , g c d ( c , p ) = d , 则 a ≡ b ( m o d p d ) a∗c≡b∗c (mod \ p),gcd(c,p)=d,则a≡b (mod \dfrac{p}{d}) acbc(mod p),gcd(c,p)=d,ab(moddp)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值