A^B的所有约数和

计算A的B次方的所有质因数之和

先将A分解质因数,推广出约数的和的式子
在推广至整个A的b次方
乘积的模等于模的乘积再取模,
每一项都是等比数列
可用等比数列求和公式计算
可先用快速幂计算分子和分母对要求数求模
只要坟分母不是9901的倍数,就直接计算分母的乘法逆元
用乘法逆元乘分子代替原式子
如果分母是乘法逆元的倍数,则此时乘法逆元不存在
但是p%9901==1;
整个式子可化简为 如下

#include<iostream>
#include<cmath>
using namespace std;
const int maxn=5000,mod=9901;

int A;
int B;
int m;
int p[maxn],c[maxn];
long long sum=1;

int divide(int n)
{
	m=0;
	for(int i=2;i<=sqrt(n);i++)
	{
		if(n%i==0)
		{
			p[++m]=i;
			c[m]=0;
			while(n%i==0)
			{
				n/=i;
				c[m]++;
			}
		}
	}
	if(n>1)
	{
		p[++m]=n;
		c[m]=1;
	}
//	for(int i=1;i<=m;i++)
//	{
//		cout<<p[i]<<' '<<c[i]<<endl;
//	}
}

int power(int a,int b)
{
	int ans=1;
	for(;b;b>>=1)
	{
		if(b&1)
			ans=(long long)ans*a%mod;
		a=(long long)a*a%mod;
	}
	return ans;
}

int main()
{
	cin>>A>>B;
	divide(A);
	sum=1;
	for(int i=1;i<=m;i++)
	{
		if((p[i]-1)%mod==0)
		{
			sum=((long long)B*c[i]+1)%mod*sum%mod;
			cout<<sum<<endl;
			continue;
		}
		int x=power(p[i],(long long)B*c[i]+1);
		x=(x-1+mod)%mod;;
		int y=p[i]-1;
		y=power(y,mod-2);
		sum=(long long)sum*x%mod*y%mod;
		cout<<sum<<endl;
	}
	
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学小牛马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值