a^x求导是怎么来的呢?

思考

a x a^x ax求导是怎么来的呢?

e e e的由来:

复利模型:如果这里不懂,复利模型又叫做利滚利模型,将钱存入银行,如果一年的增长率是 r r r,那么 x x x个周期后总增长率为:
Q = ( 1 + r ) x Q = (1+r)^x Q=(1+r)x
可以理解为 x x x个周期之后原有量会变为原来的Q倍。

之后就有个有趣的故事,如果利率升值 100 % 100\% 100%,一年可以得到多少钱呢:

Q = ( 1 + 100 % ) = 2 Q = (1+100\%)=2 Q=(1+100%)=2

现如今银行为了招揽,半年就可以支付利息,机智的自己发现如果不将利息提取继续存下去,可以得到:

Q = ( 1 + 100 % 2 ) 2 Q = (1+\frac{100\%}{2})^2 Q=(1+2100%)2

结算周期为半年,每半年利率是 100 % 2 \frac{100\%}{2} 2100%,可以理解为:
本 金 为 X 第 一 阶 段 利 率 : ( 1 + 100 % 2 ) 第 一 阶 段 结 算 : X ∗ ( 1 + 100 % 2 ) 第 二 结 算 利 率 : ( 1 + 100 % 2 ) 第 二 结 算 结 算 : X ∗ ( 1 + 100 % 2 ) ∗ ( 1 + 100 % 2 ) = X ∗ ( 1 + 100 % 2 ) 2 \begin{aligned} &本金为X\\ &第一阶段利率:(1+\frac{100\%}{2})\\ &第一阶段结算:X*(1+\frac{100\%}{2})\\ &第二结算利率:(1+\frac{100\%}{2})\\ &第二结算结算:X*(1+\frac{100\%}{2})*(1+\frac{100\%}{2})=X*(1+\frac{100\%}{2})^2 \end{aligned} X(1+2100%)X(1+2100%)(1+2100%)X(1+2100%)(1+2100%)=X(1+2100%)2

竞争越来越激烈,内卷化严重,银行告诉你:我们一年无时无刻不在结算,这样的话利率变成了:

Q = ( 1 + 1 n ) n ( n → + ∞ ) Q=(1+\frac{1}{n})^n\quad(n\rightarrow+\infty) Q=(1+n1)n(n+)

这样的话银行会不会血本无归呢,答案是不会的,这样就引出了一个数字叫做自然底数 e e e

本身可以直接运用计算方法将上述式子计算,但是我们换一个思路,将式子二项式展开

e = l i m n → + ∞ ( 1 + 1 n ) n = l i m n → + ∞ ∑ k = 0 n C n k n k = l i m n → + ∞ [ 1 + n 1 ! ∗ 1 n + n ( n − 1 ) 2 ! ∗ 1 n 2 + n ( n − 1 ) ( n − 2 ) 3 ! ∗ 1 n 3 + . . . + n ! n ! ∗ 1 n n ] = 2 + l i m n → + ∞ [ 1 2 ! ( 1 − 1 n ) ] + l i m n → + ∞ [ 1 3 ! ( 1 − 1 n ) ( 1 − 2 n ) ] + . . . = l i m n → + ∞ ∑ k = 0 n 1 k ! \begin{aligned} e &= lim_{n\rightarrow+\infty}(1+\frac{1}{n})^n\\ &= lim_{n\rightarrow+\infty}\sum_{k=0}^n\frac{C_n^k}{n^k}\\ &= lim_{n\rightarrow+\infty}[1+\frac{n}{1!}*\frac{1}{n}+\frac{n(n-1)}{2!}*\frac{1}{n^2}+\frac{n(n-1)(n-2)}{3!}*\frac{1}{n^3}+...+\frac{n!}{n!}*\frac{1}{n^n}]\\ &= 2+lim_{n\rightarrow+\infty}[\frac{1}{2!}(1-\frac{1}{n})]+lim_{n\rightarrow+\infty}[\frac{1}{3!}(1-\frac{1}{n})(1-\frac{2}{n})]+...\\ &=lim_{n\rightarrow+\infty}\sum_{k=0}^n\frac{1}{k!} \end{aligned} e=limn+(1+n1)n=limn+k=0nnkCnk=limn+[1+1!nn1+2!n(n1)n21+3!n(n1)(n2)n31+...+n!n!nn1]=2+limn+[2!1(1n1)]+limn+[3!1(1n1)(1n2)]+...=limn+k=0nk!1

又可以发现这不是泰勒级数 x = 1 x=1 x=1的形式么,神奇

利用py可得:

import numpy as np
print(sum(map(lambda x: 1 / np.math.factorial(x), np.arange(1000))))

输出:2.7182818284590455,差不多就是 e e e的前几位了

现在试试计算 a x a^x ax的反函数形式 l o g a x log_ax logax

导数的概念就是极限喽,来计算一下:
( l o g a x ) ′ = l i m Δ x → 0 l o g a ( x + Δ x ) − l o g a x Δ x = l i m Δ x → 0 1 Δ x l o g a ( 1 + Δ x x ) = l i m Δ x → 0 1 x l o g a ( 1 + Δ x x ) x Δ x \begin{aligned} (log_ax)'&=lim_{\Delta x\rightarrow0}\frac{log_a(x+\Delta x)-log_ax}{\Delta x}\\ &=lim_{\Delta x\rightarrow0}\frac{1}{\Delta x}log_a(1+\frac{\Delta x}{x})\\ &=lim_{\Delta x\rightarrow0}\frac{1}{x}log_a(1+\frac{\Delta x}{x})^{\frac{x}{\Delta x}} \end{aligned} (logax)=limΔx0Δxloga(x+Δx)logax=limΔx0Δx1loga(1+xΔx)=limΔx0x1loga(1+xΔx)Δxx
自然底数的变种出来了,结局一样所以最终结果为:
( l o g a x ) ′ = 1 x l o g a e (log_ax)'=\frac{1}{x}log_ae (logax)=x1logae
特别的:
( l n x ) ′ = 1 x (lnx)'=\frac{1}{x} (lnx)=x1

反函数导数的计算是不是显得轻而易举

详细数学证明不详述:
f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ y → 0 Δ y Δ x = 1 lim ⁡ Δ y → 0 Δ x Δ y = 1 φ ′ ( y 0 ) f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta y \rightarrow 0} \frac{\Delta y}{\Delta x}=\frac{1}{\lim _{\Delta y \rightarrow 0} \frac{\Delta x}{\Delta y}}=\frac{1}{\varphi^{\prime}\left(y_{0}\right)} f(x0)=Δx0limΔxΔy=Δy0limΔxΔy=limΔy0ΔyΔx1=φ(y0)1
从而可以得到:
( a x ) ′ = 1 ( l o g a y ) ′ = y l o g a e = a x l n a (a^x)'=\frac{1}{(log_ay)'}=\frac{y}{log_ae}=a^xlna (ax)=(logay)1=logaey=axlna

一个简单的求导想了很久,追寻本质的过程发现自己很多知识了解的还很浅显,需要继续学习,一个求导涉及到了函数,组合数学等等知识,可见数学知识树的综合性和严谨性~

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学小牛马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值