复平面上gamma函数_Gamma函数的那些事(3)——Gamma函数的应用

往期目录:TravorLZH:Gamma函数的那些事儿(1)——定义​zhuanlan.zhihu.comTravorLZH:Gamma函数的那些事儿(2)——欧拉常数与Digamma函数​zhuanlan.zhihu.com

在前两期中,无论我们是在推出Gamma函数不同的定义还是联系Digamma函数与欧拉常数的关系,我们其实都是在做一种美容。

虽然该等式的右侧看起来非常的复杂,但是它是经过对更复杂式子进行简化而得出的精美结论。尽管数学在生活中有很多用处,但这些用处还是无法与数学本身的艺术来媲美。今天作者将通过Gamma函数带着大家领略领略数学之美:

1、利用Gamma函数简化级数

虽然我们求不出一些级数,但是我们可以让它在不同的形式间转化,比如说下面这个:

根据

我们可以对级数进行如下构造:

,则

,于是我们得到变换后的级数表达式:

现在我们再用

进行换元,得到:

其中最后一项的求和号与积分号互换位置是通过控制收敛定理(Dominated convergence theorem)得到的。最后我们根据指数函数的麦克劳林展开

,将积分继续简化,得到:

我们最终通过补Gamma函数将一个级数转化为了一个简短的定积分。这还只是Gamma函数的冰山一角。

2、欧拉余元公式(Euler's reflection formula)和高斯积分(Gaussian integral)

这个式子有很多种推导方式,其中包括围道积分。但本篇文章将通过使用Gamma函数的无穷乘积形式来推导。根据Weierstrass的定义,我们有

于是我们将

乘在一起,得到:

我们得到这样一个无穷乘积公式,但是我们需要先偏一下题。现在我们来推导一下函数

的Fourier展开(其中

):

其中

对于

时,

满足:

所以最后我们得到

分别代入

到原式,得:

令x=π,我们得到:

等式两侧同时除以

,得:

现在令

,得到余切函数的Mittag—Leffler展开:

然后我们移项并积分:

此时我们令

,则

我们再把刚才得到的结论结合在一起,就得到了欧拉余元公式(Euler's reflection formula):

这个公式不仅将Gamma函数与三角函数结合在了一起,还给了我们一种新的方法来求解高斯积分:

换元:

,得到

在将

带入到欧拉余元公式中,得到:

于是我们得出结论:

3、用Gamma函数美化

众所周知,黎曼函数的定义是:

虽然这个级数看起来很吓唬人,但是我们可以用Gamma函数把西格玛转换成积分:

于是我们又能愉快地换元:

,接着得到:

根据等比级数的性质

,我们最终得到黎曼函数的积分形式:

4、斯特林公式(Stirling's approximation)

对于

,经过换元

,我们得到:

现在再设

,则有:

根据对于

,有

。我们不妨试试把它的二阶展开

放到原式被积函数里,得到

。此时我们对比一下两个函数的图像:用Desmos画出的图像

根据直觉,我们可以不难发现,

可以用

来近似,于是:

现在令

,所以:

根据我们在推导欧拉余元公式时得到的关于高斯积分的结论,我们得到了斯特林公式(Stirling's approximation):

5、拉普拉斯变换与Beta函数

在此之前,我们需要先引入一个新概念——卷积(Convolution),其中对于卷积的物理意义知乎中有很多的解答,所以本章就直接列出公式了:

现在引入新函数:

得到卷积的瑕积分表达式

,如果我们此时对卷积进行拉普拉斯变换(Laplace transform),我们可以得到一个能够简化对二重积分:

现在令

,则

,于是我们得到:

因此,我们得出

,即卷积定理(Convolution theorem)。

我们再来研究一下幂函数拉普拉斯变换的性质(其中标注的地方进行了换元:

):

现在我们定义Beta函数

,这个表达式看起来像两个幂函数的卷积,所以我们可以写出它的卷积表达式:

如果我们对该卷积进行拉普拉斯变换,可以得到:

现在我根据卷积定理,这个卷积等价于

其中Beta函数正好是t=1的情况,所以我们得到了用Gamma函数“美化”后的Beta函数表达式:

6、 黎曼函数的解析延拓

我们来看看这个积分:

其中围道

如下

):g(s)用到的围道

我们需要先说明g(s)在整个复平面解析,再说明

时g(s)可以用

表示,最后通过g(s)重新定义

,从而实现对

的解析延拓(Analytic continuation)。

若要使g(s)解析,我们需要让围道积分每一部分都解析。由于这个证明不是本篇文章的重点,所以我只写了关于

的证明

对于

,经过这样的换元:

,我们得到:

现在对积分进行放缩:

其中对于

所以该积分进一步放缩成:

现在我们再来看一下导数:

经过放缩,我们可以得到导数的绝对值有界,从而说明

处的积分解析:

通过类似的方法,我们也可以说明

的积分表达式解析,从而说明g(s)解析。

现在我们来看看g(s)与黎曼函数的关系:

因为

的积分的推导过程和

相似,其推导可以作为练习。倘若我们现在让

,则我们不难得到

,所以g(s)进一步简化成了:

现在我们可以开始用Gamma函数进行美容了。根据前面推导出的欧拉余元公式(Euler's reflection formula),我们有

,然后结合之前推导的黎曼函数积分表达式,我们得到:

于是,我们此刻重新定义黎曼函数

。因为当s=1时

不连续,而g(s)对于所有的

都解析,所以解析延拓后的黎曼函数在

中处处解析。因此,我们的黎曼函数有了新的定义:

7、黎曼函数的函数式方程 (Functional equation)

现在我们把解析延拓后的黎曼函数的围道换成下图,则

其中由于围道是顺时针方向旋转的,所以在运用留数定理(Residue theorem)时我们需要在求和公式外增加负号。通过观察,我们可以尝试证明

,即我们需要证明橙色围道在半径R趋近于正无穷时的极限为零。由于证明过程比较繁琐,本章就展示其证明思路:

1、

,其中

从0取到2π

2、对第1步里得到的积分进行放缩,得到一个用R和s表示的上限

3、R趋近于正无穷时这个积分的极限为零,使得等式成立

证明完上述内容后,我们可以用留数定理将这个围道积分进行展开。根据观察,我们发现围道包含的极点可以用

来表示,所以最终的积分可以展开为

其中,我们可以用n和s来表示每一个留数的值:

所以最后,我们把留数的表达式代入原式,得:

根据

,我们得到

。又因为

,我们得到了

的函数式方程:

因为当-s为偶数时

,所以可以发现黎曼函数的很多零点:

由于这些零点很容易被找到,它们被称为平凡零点(Trivial zeros)。而无法写成

形式的零点叫做非平凡零点(Non-trivial zeros)。经过研究,黎曼发现

很多的非平凡零点都出现在复平面上的直线

,所以他大胆猜测 所有的非平凡点的均可以写成

这便是我们大名鼎鼎的黎曼猜想(Riemann hypothesis),也是本篇文章的收尾。

参考

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值