【LeetCode】Day53-环形子数组的最大和

该博客详细介绍了如何解决LeetCode上的918题——环形子数组的最大和。通过分析最大子序和的两种可能情况,提供了一种利用动态规划在O(n)时间和O(n)空间复杂度内求解的方法,并进一步优化到只使用O(1)空间。文章讲解了如何处理全负数数组的特殊情况,并给出了两种不同实现方式的代码示例。
摘要由CSDN通过智能技术生成

题目

918. 环形子数组的最大和【中等】

题解

前置题是这道Leetcode53-最大子数组和

当数组变成环形的之后,最大子序和有两种可能:

  1. 在中间,则可以变成最大子序和,即图中case1
  2. 在两边(例如:[5,-3,5]),即图中case2,这时候最大子序和=数组总和-最小子序和
  3. 特殊情况:当数组元素全为负数(例如:[-3,-2,-3]),此时最小子序和=所有负数相加(即数组总和),2中结果会变为0,此情况应当选出数组中最大值进行返回在这里插入图片描述
class Solution {
    public int maxSubarraySumCircular(int[] nums) {
        int n=nums.length,sum,max,min;
        if(n==1)
            return nums[0];
        int[] dp_max=new int[n];//最大子序和
        int[] dp_min=new int[n];//最小子序和
        dp_max[0]=dp_min[0]=sum=max=min=nums[0];
        for(int i=1;i<n;i++){
            sum+=nums[i];//数组总和
            dp_max[i]=Math.max(dp_max[i-1]+nums[i],nums[i]);
            dp_min[i]=Math.min(dp_min[i-1]+nums[i],nums[i]);
            
            max=Math.max(max,dp_max[i]);
            min=Math.min(min,dp_min[i]);
        }
        //数组元素全是负数
        if(min==sum)
            return max;
        return Math.max(max,sum-min);
    }
}

时间复杂度: O ( n ) O(n) O(n)

空间复杂度: O ( n ) O(n) O(n)

如果要用O(1)的空间复杂度实现:将dp_max[],dp_min[]变为整型变量

class Solution {
    public int maxSubarraySumCircular(int[] nums) {
        int sum=0,max=-30001,min=30001,pre_max=-30001,pre_min=30001;
        for(int a:nums){
            sum+=a;//数组总和
            pre_max=Math.max(pre_max+a,a);//最大子序和
            pre_min=Math.min(pre_min+a,a);//最小子序和
            
            max=Math.max(max,pre_max);
            min=Math.min(min,pre_min);
        }
        return min==sum?max:Math.max(max,sum-min);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值