Matlab2013a学习之提取语音特征参数MFCC

在语音识别(SpeechRecognition)和话者识别(SpeakerRecognition)方面,最常用到的语音特征就是梅尔倒谱系数(Mel-scaleFrequency Cepstral Coefficients,简称MFCC)。
根据人耳听觉机理的研究发现,人耳对不同频率的声波有不同的听觉敏感度。从200Hz到5000Hz的语音信号对语音的清晰度影响对大。两个响度不等的声音作用于人耳时,则响度较高的频率成分的存在会影响到对响度较低的频率成分的感受,使其变得不易察觉,这种现象称为掩蔽效应。由于频率较低的声音在内耳蜗基底膜上行波传递的距离大于频率较高的声音,故一般来说,低音容易掩蔽高音,而高音掩蔽低音较困难。在低频处的声音掩蔽的临界带宽较高频要小。所以,人们从低频到高频这一段频带内按临界带宽的大小由密到疏安排一组带通滤波器,对输入信号进行滤波。将每个带通滤波器输出的信号能量作为信号的基本特征,对此特征经过进一步处理后就可以作为语音的输入特征。由于这种特征不依赖于信号的性质,对输入信号不做任何的假设和限制,又利用了听觉模型的研究成果。因此,这种参数比基于声道模型的LPCC相比具有更好的鲁邦性,更符合人耳的听觉特性,而且当信噪比降低时仍然具有较好的识别性能。
梅尔倒谱系数(Mel-scale Frequency Cepstral Coefficients,简称MFCC)是在Mel标度频率域提取出来的倒谱参数,Mel标度描述了人耳频率的非线性特性,它与频率的关系可用下式近似表示:
在这里插入图片描述
式中f为频率,单位为Hz。下图展示了Mel频率与线性频率的关系:
在这里插入图片描述
用Matlab程序,从自己录制的一句单词中获得MFCC特征值:
添加voicebox:

addpath(genpath('G:\2018and2019two\duomeitijishu\Ruanjian\voicebox'))

代码:

% MFCC implement with Matlab %  
[x fs]=wavread('G:\2018and2019two\duomeitijishu\实验报告\实验四\siyuone.wav');  
bank=melbankm(24,256,fs,0,0.4,'t'); %Mel滤波器的阶数为24,FFT变换的长度为256,采样频率为16000Hz  
%归一化Mel滤波器组系数  
bank=full(bank); %full() convert sparse matrix to full matrix  
bank=bank/max(bank(:));  
for k=1:12  
    n=0:23;  
    dctcoef(k,:)=cos((2*n+1)*k*pi/(2*24));  
end  
w=1+6*sin(pi*[1:12]./12);%归一化倒谱提升窗口  
w=w/max(w);%预加重滤波器  
xx=double(x);  
xx=filter([1-0.9375],1,xx);%语音信号分帧  
xx=enframe(xx,256,80);%对xx 256点分为一帧  
%计算每帧的MFCC参数  
for i=1:size(xx,1)  
    y=xx(i,:);  
    s=y'.*hamming(256);  
    t=abs(fft(s));%FFT快速傅里叶变换  
    t=t.^2;  
    c1=dctcoef*log(bank*t(1:129));  
    c2=c1.*w';  
    m(i,:)=c2;  
end  
%求一阶差分系数  
dtm=zeros(size(m));  
for i=3:size(m,1)-2  
    dtm(i,:)=-2*m(i-2,:)-m(i-1,:)+m(i+1,:)+2*m(i+2,:);  
end  
dtm=dtm/3;  
%求取二阶差分系数  
dtmm=zeros(size(dtm));  
for i=3:size(dtm,1)-2  
    dtmm(i,:)=-2*dtm(i-2,:)-dtm(i-1,:)+dtm(i+1,:)+2*dtm(i+2,:);  
end  
dtmm=dtmm/3;  
%合并mfcc参数和一阶差分mfcc参数  
ccc=[m dtm dtmm];  
%去除首尾两帧,以为这两帧的一阶差分参数为0  
ccc=ccc(3:size(m,1)-2,:);  
ccc;  
subplot(2,1,1);  
ccc_1=ccc(:,1);  
plot(ccc_1);title('MFCC');ylabel('幅值');  
[h,w]=size(ccc);  
A=size(ccc);  
subplot(2,1,2);  
plot([1,w],A);  
xlabel('维数');ylabel('幅值');  
title('维数与幅值的关系');  

运行结果:
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值