yolov5部署以及训练10种中药材分类数据集

本文记录了使用yolov5训练10种中药材分类数据集的全过程,包括环境部署、依赖包安装、数据集准备、模型训练及问题解决。在部署yolov5时,建议使用anaconda虚拟环境和pip安装依赖。训练数据集需按YOLO格式组织,并修改相应配置文件。训练过程中可能遇到内存不足的问题,可通过调整虚拟内存解决。训练完成后,使用detect.py测试模型。
摘要由CSDN通过智能技术生成

记录以下我使用yolov5来训练自己数据集的过程以及遇到的坑~~~

首先要部署yolov5的环境

首先去github上下载yolov5直达

安装依赖包

编译环境我是用的是anaconda 创建的虚拟环境,方便管理,如何创建虚拟环境就不细讲了。创建好之后根据yolov5中的requirment.txt安装它需要的依赖包。
方式一:之前第一次配置环境的时候,用的是pycharm来安装依赖,有几个包一直报错,还是通过pip install 包.whl的方式安装上的,特别是coco。
方式二:后来换了电脑,直接在anaconda prompt中通过pip就很顺利的就装好了。
还是推荐方式二安装依赖包,方便又好管理

测试yolov5

进入anaconda的虚拟环境,进入到yolov5的路径下,执行:

python detect.py --source 0

--source 0 表示是用电脑的摄像头,采集视频。如果不想采集视频,可以不加上source,直接使用\data\images文件下的测试图片不管是图片还是视频,测试的结果会保存在yolov5项目中\runs\detect\exp文件夹下。

这样yolov5就部署好了,可以训练自己的数据集了。

准备训练集

yolov5的数据集的形式有很多种,我才用的是
图片与标签分开存放在不同的文件夹下,目录如下:
在这里插入图片描述

images中存放的是训练和验证的图片,labels中存放的是标签。之前存放图片的文件夹名称为img,在训练的时候老是报错not found labels,改成images就好了。
标签和图片是根据图片名称来对应的。
打标签用的是LabelImg,使用的方法就不介绍了,记得使用YOLO的标签格式

更改程序

一:将data/coco128.yaml文件更改三个地方:
1.train/val 的路径 更改为自己的图片的存放地址,标签的地址可以自动推断出来
2.nc 更改分类数目
3.names 更改分类名称
下面是根据我的数据集更改过后的文件

# COCO 2017 dataset http://cocodataset.org - first 128 training images
# Train command: python train.py --data coco128.yaml
# Default dataset location is next to YOLOv5:
#   /parent_folder
#     /coco128
#     /yolov5


# download command/URL (optional)
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip

# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../train_imgs/images/train  # 1700 images
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值