【路径规划】基于A*算法的多机器人路径图解决方案(Matlab实现)

💥1 概述

在现代自动化和机器人技术中,多机器人系统的协同工作成为研究热点。为了使这些机器人高效且安全地执行任务,路径规划变得至关重要。A*(A-Star)算法因其在寻找最优路径方面的效率而广受欢迎。然而,在多机器人场景下,简单的A算法无法直接解决机器人之间的碰撞问题。因此,需要一种扩展的A算法来处理多机器人路径规划。A算法是一种启发式搜索算法,它结合了图的最短路径算法Dijkstra和启发式搜索,能够在有向图中找到两个节点之间的最短路径。A算法使用一个评估函数f(n) = g(n) + h(n),其中g(n)是从起始节点到当前节点n的实际代价,h(n)是启发式估计从n到目标节点的代价。

A算法是一种广泛应用于路径搜索和图遍历的启发式搜索算法,尤其适用于寻找从起始节点到目标节点的最短路径。在多机器人路径规划的场景中,A算法可以被扩展和调整来处理多个代理(即机器人)同时或依次移动时的路径避免碰撞问题。以下是基于A*算法实现多机器人路径规划的基本思路和解决方案:

1. 基础A*算法回顾

A*算法的核心在于其评估函数f(n) = g(n) + h(n),其中:

g(n)是从初始节点到当前节点的实际代价,

h(n)是从当前节点到目标节点的启发式估计代价(通常要求是乐观的,即不大于实际代价),

n代表当前考虑的节点。

算法通过维护一个优先队列(通常是开放列表),按照f(n)值排序,每次从队列中选择具有最小f(n)值的节点进行扩展,并检查所有相邻节点,更新它们的路径代价和启发式估计值,直到找到目标节点。

2. 多机器人路径规划的挑战

路径冲突:多个机器人可能需要访问同一区域,导致路径冲突。

动态避障:环境中可能有动态障碍物,机器人需实时调整路径。

资源分配:有限的空间和时间资源需要合理分配给各个机器人。

3. 基于A*的多机器人路径规划解决方案

3.1. 静态环境下的多机器人路径规划

个体规划与协调:为每个机器人独立运行A*算法,生成各自的初始路径。之后,采用冲突检测与解决机制,如时间窗分配、速度调节等,以避免路径交叉。

增加障碍物:在A*算法执行过程中,将其他机器人的当前位置和未来预测位置视为静态障碍物加入地图中,从而动态避开彼此。

共享信息与协作:机器人之间可以通过无线通信共享它们的路径信息,协同规划,避免冲突区域,实现全局最优路径分配。

3.2. 动态环境的适应性

重规划策略:当检测到新的障碍物或机器人路径冲突时,受影响的机器人需要重新启动A*算法,考虑新环境条件重新规划路径。

局部重计算:对于小范围变化,不需要完全重算整个路径,仅对受影响的部分路径进行优化调整。

3.3. 启发式和约束的定制

自适应启发式函数:根据不同机器人任务的紧急程度、能量限制等因素调整启发式函数中的权重,以满足不同需求。

加权A*算法:在A*中引入额外的约束条件或权重因子,比如考虑机器人间的安全距离,确保路径规划既高效又安全。

4. 实现技巧

并行处理:利用现代计算资源,对不同机器人的路径规划进行并行计算,加快规划速度。

路权分配:设计算法对高优先级或紧急任务的机器人给予更多路径选择的优先权。

仿真验证:在实际部署前,通过模拟环境测试路径规划的效率和稳定性,不断调优参数。

综上所述,基于A*算法的多机器人路径规划不仅需要对单个机器人进行有效的路径搜索,还需要综合考虑多机器人协作、环境动态性及资源分配等复杂因素,通过引入协作机制、动态重规划策略和适应性启发式方法,以达到整体最优的路径规划效果。

📚2 运行结果

主函数部分代码:

clear allclcclose all  % this demo is based on nxn grid graph as the paper shows% robots are on the grid and they can move just 4 basic direction.% this demo runs just for any number of robot. ngrid=3;nrobot=9; % create bidirectional grid as the same example in the paper in fig1[Graph Loc Edge]=GridGraph(ngrid); % plot the created grid-graphfigure; plot(Loc(:,1),Loc(:,2),'bo');axis([0 ngrid+1 0 ngrid+1]);hold on;for i=1:2:size(Edge,1)    x1=Loc(Edge(i,1),1);    x2=Loc(Edge(i,2),1);    y1=Loc(Edge(i,1),2);    y2=Loc(Edge(i,2),2);    line([x1;x2],[y1;y2]);end % set the maximum time stepts=7; % r1 is 3nd cell, r2 is 5th cell and r3 is 6th cell ,..., r9 is in 1st cell  sp=[3 5 6 2 9 7 8 4 1]; % r1 1st cell, r2 2nd cell and r3 3th cell, r9 is 9th cell as end positions ep=[1 2 3 4 5 6 7 8 9] + ngrid*ngrid*(ts-1); % create time based graph which has ts times more node in figure 5 in paper[tG,tedge,tloc]= createtimegraph(Graph,Edge,Loc,ts); % solve the problem with a*, it is not the same with paper since they used% ILP solver.[route] = astar3(tG,tloc,sp,ep,ts); % show the reults on the screen i=1;frm=0;h=figure; hold on;for j=1:nrobot        pl(j,:)=[tloc(route(i,j),2) ngrid+1-tloc(route(i,j),1)];endaxis([0 ngrid+1 0 ngrid+1]);axis off;set(gcf,'color','w');for i=1:2:size(Edge,1)    x1=Loc(Edge(i,1),1);    x2=Loc(Edge(i,2),1);    y1=Loc(Edge(i,1),2);    y2=Loc(Edge(i,2),2);    line([x1;x2],[y1;y2]);endhold off;

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]王亦晨,刘雪梅.基于冲突搜索增强深度强化学习的多AGV路径规划方法[J/OL].机电工程技术:1-7[2024-07-16].http://kns.cnki.net/kcms/detail/44.1522.TH.20240715.1114.002.html.

[2]徐雯清,顾大德,刘有志,等.基于自适应金豺狼优化算法的巡检机器人路径规划[J/OL].核电子学与探测技术:1-7[2024-07-16].https://doi.org/10.20173/j.cnki.ned.20240714.002.

🌈4 Matlab代码实现

详情请联系:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值