统计学里的小故事

上课老师提到一句很重要的话—随机非随意
也不是这位老师创作的,貌似是一位德高望重的老先生说过的吧。对统计学的理解很有帮助,我的理解如下:
随机性大概是:即便是不能知道具体哪种情况会发生,但是总逃不出“手掌心”,也就是说事件发生的总体情况是可预见的。而这一点可以很明显地与“随意”区分开来。

读书笔记:
最近在看John.A.Rice的《数理统计与数据分析》,随手记下一点点笔记。
1.辛普森悖论
简述:一个反直觉的结论。
要求:尽可能抽出红球。
情况1:

黑色盒子白色盒子
5个红球3个红球
6个绿球4个绿球

那么,
在黑色盒子中,抽到红球的概率为5/11=0.455,
在白色盒子中,抽到红球的概率为3/7=0.429
结论:从黑色盒子中抽取。
情况2:

黑色盒子白色盒子
6个红球9个红球
3个绿球5个绿球

那么,
在黑色盒子中,抽到红球的概率为6/9=0.667,
在白色盒子中,抽到红球的概率为9/14=0.643
结论:从黑色盒子中抽取。
情况3:
将上述两种情况的黑色盒子和白色盒子分别混合在一起,即:

黑色盒子白色盒子
11个红球12个红球
9个绿球9个绿球

那么,
参考情况1和情况2,应该选择从黑色盒子中抽取。
而,实际上,此时,
在黑色盒子中,抽到红球的概率为11/20=0.55,
在白色盒子中,抽到红球的概率为12/21=0.571
即应该从白色盒子中抽取。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值