上课老师提到一句很重要的话—随机非随意,
也不是这位老师创作的,貌似是一位德高望重的老先生说过的吧。对统计学的理解很有帮助,我的理解如下:
随机性大概是:即便是不能知道具体哪种情况会发生,但是总逃不出“手掌心”,也就是说事件发生的总体情况是可预见的。而这一点可以很明显地与“随意”区分开来。
读书笔记:
最近在看John.A.Rice的《数理统计与数据分析》,随手记下一点点笔记。
1.辛普森悖论
简述:一个反直觉的结论。
要求:尽可能抽出红球。
情况1:
黑色盒子 | 白色盒子 |
---|---|
5个红球 | 3个红球 |
6个绿球 | 4个绿球 |
那么,
在黑色盒子中,抽到红球的概率为5/11=0.455,
在白色盒子中,抽到红球的概率为3/7=0.429
结论:从黑色盒子中抽取。
情况2:
黑色盒子 | 白色盒子 |
---|---|
6个红球 | 9个红球 |
3个绿球 | 5个绿球 |
那么,
在黑色盒子中,抽到红球的概率为6/9=0.667,
在白色盒子中,抽到红球的概率为9/14=0.643
结论:从黑色盒子中抽取。
情况3:
将上述两种情况的黑色盒子和白色盒子分别混合在一起,即:
黑色盒子 | 白色盒子 |
---|---|
11个红球 | 12个红球 |
9个绿球 | 9个绿球 |
那么,
参考情况1和情况2,应该选择从黑色盒子中抽取。
而,实际上,此时,
在黑色盒子中,抽到红球的概率为11/20=0.55,
在白色盒子中,抽到红球的概率为12/21=0.571
即应该从白色盒子中抽取。