语义分割
文章平均质量分 51
语义分割
卖报的大地主
书山有路勤为径,学海无涯苦作舟
展开
-
多颜色绘制语义分割/变化检测结果图
在论文绘图时,传统的二元语义分割结果图颜色单一(下图左),所以论文中常根据混淆矩阵类别使用多颜色进行绘制(下图右),可以看到,结果的可视化效果更好。原创 2024-09-24 21:06:59 · 357 阅读 · 0 评论 -
【论文笔记】RS-Mamba for Large Remote Sensing Image Dense Prediction(附Code)
论文作者提出了RS-Mamba(RSM)用于高分辨率遥感图像遥感的密集预测任务。RSM设计用于模拟具有线性复杂性的遥感图像的全局特征,使其能够有效地处理大型VHR图像。它采用全向选择性扫描模块,从多个方向对图像进行全局建模,从多个方向捕捉大的空间特征。2D全向扫描机制是本研究的主要创新点。作者考虑到遥感影像地物多方向的特点,在VMamba2D双向扫描机制的基础上增加了斜向扫描机制。原创 2024-04-17 14:56:58 · 1127 阅读 · 7 评论 -
三通道或单通道图像裁剪与拼接
三通道或单通道图像裁剪与拼接原创 2024-04-14 21:35:30 · 263 阅读 · 0 评论 -
使用训练好的MMSegmentation模型推理大尺度遥感影像(包含遥感影像裁剪和拼接代码)
使用训练好的MMSegmentation模型推理大尺度遥感影像(包含遥感影像裁剪和拼接代码)。模型推理部分采用的是MMSegmentation框架的模型,可根据自己的模型(如pytorch或tensorflow模型)情况修改该部分。原创 2024-03-13 19:56:23 · 1130 阅读 · 2 评论 -
MMSegmentation 模型训练结果批量推理及结果保存脚本
MMSegmentation模型训练结果进行批量推理测试及结果保存原创 2023-08-25 15:40:03 · 1524 阅读 · 8 评论 -
【人工智能前沿弄潮】—— SAM系列:SAM自动生成物体mask
由于SAM可以高效处理提示,可以通过在图像上抽样大量的提示来生成整个图像的mask。这种方法被用来生成数据集SA-1B。类实现了这个功能。它通过在图像上的网格中对单点输入提示进行抽样,从每个提示中SAM可以预测多个mask。然后,使用非极大值抑制对mask进行质量过滤和去重。其他选项允许进一步提高mask的质量和数量,例如在图像的多个裁剪上运行预测,或者对mask进行后处理以去除小的不连通区域和孔洞。原创 2023-08-09 19:05:04 · 2887 阅读 · 2 评论 -
【人工智能前沿弄潮】—— SAM系列:SAM从提示生成物体mask
Segment Anything Model(SAM)根据指示所需的对象来预测对象掩码。该模型首先将图像转换为图像嵌入,从而可以从提示中高效地生成高质量的掩码。类为模型提供了一个简单的接口来提示模型。用户可以首先使用set_image方法设置图像,该方法会计算所需的图像嵌入。然后,可以通过predict方法提供提示,以从这些提示中高效地预测掩码。模型可以接受点和框提示以及先前迭代预测的掩码作为输入。原创 2023-08-09 19:01:07 · 2028 阅读 · 0 评论 -
【人工智能前沿弄潮】—— SAM系列:玩转SAM(Segment Anything)
SAM的出现是否示意着传统CV行业的落寞?随着Chatgpt、扩散模型等产品出现,等成为了如今超级火热的话题。分割一切,Facebook利用超大数据集训练出来的SAM模型给CV界带来了巨大冲击,使得prompt engineering提示工程在CV领域同样得到发展应用,这也给我们众多计算机视觉研究者带来启发,基于大数据实现各类型场景视觉任务的可prompt模型,甚至统一视觉范式的终极大模型离我们越来越近。原创 2023-08-09 18:49:54 · 595 阅读 · 0 评论 -
【深度学习可视化系列】—— CAM可视化(以语义分割网络为例,支持Vit系列主干网络的分割模型,支持GradCAM, GradCAMPlusPlus, LayerCAM等cam可视化方法)
【深度学习可视化系列]】—— CAM可视化(以语义分割网络为例,支持Vit系列主干网络的分割模型,支持GradCAM, GradCAMPlusPlus, LayerCAM等cam可视化方法)原创 2023-08-08 16:05:18 · 2485 阅读 · 7 评论 -
【图像分割】传统分割算法—分水岭算法(包含基于opencv的实例展示)
分水岭算法将图像看作地理学中的地形表面,图像中的高灰度值区域被看作山峰,低灰度值区域被看作山谷。进而实现图像的分割。假如我们向“山谷”中注水,水位则会逐渐升高,然后不同山谷的水就会汇集在一起,如果我们阻止来自不同山谷的水汇集,我们需在水流可能交汇处建立堤坝,我们需要把图像分成两个不同的集合:集水盆地和分水岭线。我们建立的堤坝即是分水岭线,也即是对原图像的分割。但是由于图像中的噪声或任何其他不规则性,这种方法会造成过度分割的结果。所以OpenCV。原创 2023-03-20 19:10:01 · 6829 阅读 · 0 评论