图像生成
文章平均质量分 85
AIGC
卖报的大地主
书山有路勤为径,学海无涯苦作舟
展开
-
生成式AI系列 —— DCGAN生成手写数字
【代码】生成式AI系列 —— DCGAN生成手写数字。原创 2023-08-20 02:15:59 · 742 阅读 · 0 评论 -
生成式AI系列——什么是生成对抗模型(GAN)?
生成对抗网络(GAN, Generative adversarial network)自从2014年被Ian Goodfellow提出以来,掀起来了一股研究热潮。GAN由生成器和判别器组成,生成器负责生成样本,判别器负责判断生成器生成的样本是否为真。生成器要尽可能迷惑判别器,而判别器要尽可能区分生成器生成的样本和真实样本。转载 2023-08-17 21:49:40 · 1414 阅读 · 2 评论 -
【人工智能前沿弄潮】——生成式AI系列:扩散模型及稳定扩散模型
与GAN 利用生成器和判别器进行对抗训练来生成图像不同,扩散模型则是通过对生成的随机噪声进行循环去噪来生成图像,就有点像雕刻一样,一块原石,随着大师一点一点地去除掉多余的部分,剩下的就是完美的艺术品。所使用的随机噪声需要和生成的目标图像具有相同的高宽。在扩散模型的去噪过程中,去噪的步骤数(step)是人工提前定好的,如1000等。这个step不仅是步骤数,也代表着噪声的严重程度信息。并且每次去噪所的Denoise 模块是同一个,进行反复使用。原创 2023-08-11 00:53:13 · 1874 阅读 · 0 评论 -
【人工智能前沿弄潮】——生成式AI系列:Diffusers应用 (1) 了解Pipeline 、模型和scheduler
Diffusers旨在成为一个用户友好且灵活的工具箱,用于构建针对您的用例量身定制的扩散系统。工具箱的核心是模型和scheduler。虽然为了方便起见将这些组件捆绑在一起,但您也可以拆分管道并单独使用模型和scheduler来创建新的扩散系统。在本教程中,您将学习如何使用模型和scheduler来组装用于推理的扩散系统,从基本管道开始,然后发展到稳定扩散管道。原创 2023-08-11 01:06:47 · 1781 阅读 · 0 评论 -
使用AnimeGAN2和anime-segmentation生成自己的漫画头像
今天我们来介绍一下怎么利用GAN生成属于的自己的漫画风头像。所需要用的生成模型为AnimeGAN2。原创 2023-08-17 16:05:27 · 749 阅读 · 0 评论 -
【人工智能前沿弄潮】——生成式AI系列:Diffusers应用 (2) 训练扩散模型(无条件图像生成,用于遥感领域的尝试)
无条件生成型的一种流行应用,它生成的图像看起来像用于训练的数据集中的图像。与文本或图像到图像模型不同,。它只生成与其训练数据分布相似的图像。通常,通过在特定数据集上微调预训练模型可以获得最佳结果。本教程主要来自官方教程,结合一些自己的修改,以支持训练本地数据集。我们首先依据官方教程,利用史密森尼蝴蝶数据集的子集上从头开始训练,以生我们自己的的。最后因为我是搞遥感方向的(测绘小卡拉米),所以利用进行训练尝试,遥感影像使用的是煤矿区的无人机遥感影像,主要就是裸地和枯草,有的还有一些因为煤矿开采导致的地裂缝。原创 2023-08-13 19:59:23 · 1649 阅读 · 0 评论