栈的链接存储结构及实现
链栈:栈的链接存储结构
链栈的类声明:
template <class T>
class LinkStack
{
public:
LinkStack( ) {top=NULL;};
~LinkStack( );
void Push(T x);
T Pop( );
T GetTop( );
bool Empty( );
private:
Node<T> *top;
}
链栈的实现——插入(入栈)
操作接口:(void Push(T x));
算法描述:
template <class T>
void LinkStack<T>::Push(T x)
{
s=new Node<T>;
s->data=x;
s->next=top;
top=s;
}
链栈的实现——删除(出栈)
操作接口: T Pop( );
算法描述:
template <class T>
T LinkStack<T>::Pop( )
{
if (top==NULL)
throw "下溢";
x=top->data;
p=top;
top=top->next;
delete p;
return x;
}
链栈的实现——链栈的析构(链栈的销毁)
template <class T>
LinkStack<T>::~LinkStack( )
{
while (top)
{
Node<T> *p;
p=top->next;
delete top;
top=p;
}
}
顺序栈和链栈的比较
时间性能:相同,都是常数时间O(1)。
空间性能:
顺序栈:有元素个数的限制和空间浪费的问题。
链栈:没有栈满的问题,只有当内存没有可用空间时才会出现栈满,但是每个元素都需要一个指针域,从而产生了结构性开销。
结论:当栈的使用过程中元素个数变化较大时,用链栈是适宜的,反之,应该采用顺序栈。
后缀表达式求值算法
从左到右对后缀表达式字符串进行处理,每次处理一个符号
- 若遇到数字,入栈
- 若遇到运算符,栈顶两个数字出栈,执行运算符所定义的运算,并将运算结果入栈
- 重复以上的工作,直到表达式结束,此时,栈中的数字代表最终的值。
中缀表达式求值
表达式的组成:
- 操作数(operand):
操作数既可以是常数, 也可以是被说明为变量或常量;
- 运算符(operator):
运算符可以分为算术运算符、 关系运算符和逻辑运算符三类,不同的运算符有不同的优先级以及结合性
- 界限符(delimiter) :
基本界限符有左右括号和表达式结束符等。 例如:
#(3+4)*5-2#,界限符的优先级相同(左括号和右括号的优先级相同,#的优先级也相同)
中缀表达式求值过程
- 设置两个栈:
OVS(运算数栈)和OPTR(运算符栈)。
(2) 自左向右扫描中缀表达式,
遇操作数进OVS,
遇操作符则与OPTR栈顶优先数比较:
OPTR栈顶<当前操作符, 当前操作符进OPTR栈
OPTR栈顶>=当前操作符,OVS栈顶、次顶和OPTR栈顶,退栈形成运算T(i),T(i)进OVS栈。
中缀表达式转化为后缀表达式
设置一个运算符栈。从左到右依次对中缀表达式中的每个符号进行处理
如果遇到数字,直接输出
如果遇到“(”,则将其入栈
如果遇到运算符a,如果栈顶符号的优先级低于a的优先级,则入栈;否则,栈顶符号出栈,直到栈顶符号的优先级低于a的优先级,此时让a入栈
若遇到“)”,则栈顶符号出栈,直到“(”
重复以上工作,直到表达式结束,此时,将栈里符号全部出栈。