信号检测与估计(1)

本课程使用数目是 张明友《信号检测与估计》

假设检验(Hypothesis Test)

理论

已知信号 S ( t ) S(t) S(t) M M M个状态(即为M个假设),对接收的信号(样本值)进行处理(在时间范围 [ 0 , T ] [0, T] [0,T])。根据某个准则,作出判决哪个为真, 且可得到此判决为正确的概率。

以上摘自老师PPT,我认为上述都是废话。

简单数学模型

  1. 源 (Source): 称源的输出为假设(Hypotheses)
  2. 概率转移机制(Probabilistic Transition Mechanism)
  3. 观测空间(Observation Space).我们经常设为 X X X,观测空间中的点为: x \mathbf x x, ∀ x ∈ X \forall\mathbf x\in X xX
  4. 判决准则(Decision Rule)
    概率数学模型
    又是大实话。。。

双择检测(Binary Hypothesis Test)问题

信息传输系统,信息发送端只有两种状态( H 0 H_0 H0 H 1 H_1 H1),在接收到 x ( t ) x(t) x(t)的条件下,可以作出两种判决( D 0 D_0 D0 D 1 D_1 D1)。
我们规定了一个代价因子来计算错误的’代价’,利用代价的最小化来让判定最优化:

代价因子定义:

C i j C_{ij} Cij表示假设 H j H_j Hj为真,却选择了假设 H i H_i Hi的 代价,称为代价因子(cost factor)。

代价因子一般为人为规定的,在考试中,一般上 会将 C i j C_{ij} Cij给出。

双择检验 可以利用的条件

在双择检测中,有 i , j ∈ { 0 , 1 } i,j\in \{0,1\} i,j{0,1}
我们可以利用如下的条件让判决最优化:

  1. 代价因子
  2. 先验概率 p ( H 0 ) p(H_0) p(H0) p ( H 1 ) p(H_1) p(H1): 也就是我们知道的各个假设出现的概率
  3. 噪声的统计特性 p ( n ) p(n) p(n)
  4. 信号的波形 s 0 ( t ) s_0(t) s0(t) s 1 ( t ) s_1(t) s1(t)

双择检验:平均风险

给定 x \bf x x的情况

这种情况就是:已经接收到了信号,进行判决而产生的风险。
给定 x \bf x x,判为 D 1 D_1 D1的平均代价
r ( D 1 ∣ x ) = C 10 P ( H 0 ∣ x ) + C 11 P ( H 1 ∣ x ) r(D_1|\mathbf x)=C_{10}P(H_0|\mathbf x)+C_{11}P(H_1|\bf x) r(D1x)=C10P(H0x)+C11P(H1x)
给定 x \bf x x,判为 D 0 D_0 D0的平均代价
r ( D 0 ∣ x ) = C 00 P ( H 0 ∣ x ) + C 01 P ( H 1 ∣ x ) r(D_0|\mathbf x)=C_{00}P(H_0|\mathbf x)+C_{01}P(H_1|\bf x) r(D0x)=C00P(H0x)+C01P(H1x)
定义平均代价为:
r ( x ) = { r ( D 0 ∣ x ) ,   D 0 r ( D 1 ∣ x ) ,   D 1 r(\bf x)= \begin{cases} r(D_0|\mathbf x),\ D_0\\ r(D_1|\mathbf x),\ D_1\\ \end{cases} r(x)={r(D0x), D0r(D1x), D1
平均风险为:
R = ∫ x r ( x ) p ( x ) d x R=\int_{\bf x}r(\mathbf x)p(\mathbf x)d\mathbf x R=xr(x)p(x)dx
这里的 p ( x ) p(\mathbf x) p(x)是某一事件的概率密度,我们将其与平均代价相乘积分就能得到平均风险

给定 H i H_i Hi的情况

我个人认为本概念就是对源求解判决的风险。
给定 H 0 H_0 H0,判决的平均代价
r ( H 0 ) = C 00 P ( D 0 ∣ H 0 ) + C 10 P ( D 1 ∣ H 0 ) r(H_0)=C_{00}P(D_0|H_0)+C_{10}P(D_1|H_0) r(H0)=C00P(D0H0)+C10P(D1H0)
给定 H 1 H_1 H1,判决的平均代价
r ( H 1 ) = C 01 P ( D 0 ∣ H 1 ) + C 11 P ( D 1 ∣ H 1 ) r(H_1)=C_{01}P(D_0|H_1)+C_{11}P(D_1|H_1) r(H1)=C01P(D0H1)+C11P(D1H1)
平均风险为:
R = r ( H 0 ) P ( H 0 ) + r ( H 1 ) P ( H 1 ) = ∑ i , j C i j P ( D i , H j ) \begin{aligned} R&=r(H_0)P(H_0)+r(H_1)P(H_1)\\ &=\sum_{i,j}C_{ij}P(D_i,H_j) \end{aligned} R=r(H0)P(H0)+r(H1)P(H1)=i,jCijP(Di,Hj)
讲义上说,两种平均风险是一致的:
R = ∫ x r ( x ) p ( x ) d x = ∑ i , j C i j P ( D i , H j ) R=\int_{\bf x}r(\mathbf x)p(\mathbf x)d\mathbf x=\sum_{i,j}C_{ij}P(D_i,H_j) R=xr(x)p(x)dx=i,jCijP(Di,Hj)
说了这么多,我们最终设计判决方法的核心思想就是最小化风险, i . e .   m i n { R } i.e.\ min\{R\} i.e. min{R}

贝叶斯准则(Bayes Criterion)

我们已知上面列举的四个已知条件,如何进行最优化的判决呢?
以下是推导过程:

思路一:根据平均风险的第一个公式
我们已知 p ( x ) > 0 p(\mathbf x)>0 p(x)>0 r ( x ) > 0 r(\mathbf x)>0 r(x)>0,根据公式 R = ∫ x r ( x ) p ( x ) d x R=\int_{\bf x}r(\mathbf x)p(\mathbf x)d\mathbf x R=xr(x)p(x)dx,我们需要最小化 p ( x ) p(\mathbf x) p(x)。而对于双择检验来说,如果已经接收到信号,则意味着我们有两种判定,这样的话,也就只有两种平均风险 r ( x ) = r ( D 1 ∣ x ) r(\mathbf x)=r(D_1|\mathbf x) r(x)=r(D1x)或者 r ( x ) = r ( D 0 ∣ x ) r(\mathbf x)=r(D_0|\mathbf x) r(x)=r(D0x)。 所以我们可以做这样的判决:
r ( D 1 ∣ x ) > D 0 ≤ D 1 r ( D 0 ∣ x ) r(D_1|\mathbf x)^{\overset{D_1}{\leq}}_{\underset{D_0}{>}}r(D_0|\mathbf x) r(D1x)D0>D1r(D0x) 也就是 C 10 P ( H 0 ∣ x ) + C 11 P ( H 1 ∣ x ) > D 0 ≤ D 1 C 00 P ( H 0 ∣ x ) + C 01 P ( H 1 ∣ x ) C_{10}P(H_0|\mathbf x)+C_{11}P(H_1|\mathbf x)^{\overset{D_1}{\leq}}_{\underset{D_0}{>}}C_{00}P(H_0|\mathbf x)+C_{01}P(H_1|\bf x) C10P(H0x)+C11P(H1x)D0>D1C00P(H0x)+C01P(H1x) 美观下公式就有: P ( H 1 ∣ x ) P ( H 0 ∣ x ) > D 0 ≤ D 1 C 10 − C 00 C 01 − C 11 \frac{P(H_1|\mathbf x)}{P(H_0|\mathbf x)}^{\overset{D_1}{\leq}}_{\underset{D_0}{>}}\frac{C_{10}-C_{00}}{C_{01}-C_{11}} P(H0x)P(H1x)D0>D1C01C11C10C00 双不等号左边这玩意叫做似然比门限。 但是这玩意需要计算后验概率( P ( H i ∣ x ) P(H_i|\mathbf x) P(Hix)),我们还要算一遍,不经济。于是我们利用贝叶斯公式: P ( H i ∣ x ) = P ( x ∣ H i ) P ( H i ) P ( x ) P(H_i|\mathbf x)=\frac{P(\mathbf x|H_i)P(H_i)}{P(\mathbf x)} P(Hix)=P(x)P(xHi)P(Hi)我们就可以再次化简: Λ ( x ) = △ P ( x ∣ H 1 ) P ( x ∣ H 0 ) > D 0 ≤ D 1 P ( H 0 ) ( C 10 − C 00 ) P ( H 1 ) ( C 01 − C 11 ) = △ Λ 0 \Lambda(\mathbf x)\overset{\triangle}{=}\frac{P(\mathbf x|H_1)}{P(\mathbf x|H_0)}^{\overset{D_1}{\leq}}_{\underset{D_0}{>}}\frac{P(H_0)(C_{10}-C_{00})}{P(H_1)(C_{01}-C_{11})}\overset{\triangle}{=}\Lambda_0 Λ(x)=P(xH0)P(xH1)D0>D1P(H1)(C01C11)P(H0)(C10C00)=Λ0 Λ ( x ) \Lambda(\mathbf x) Λ(x)j叫做似然比。
思路二:根据平均风险的第二个公式

该公式为 R = r ( H 0 ) P ( H 0 ) + r ( H 1 ) P ( H 1 ) R=r(H_0)P(H_0)+r(H_1)P(H_1) R=r(H0)P(H0)+r(H1)P(H1),我们已知: { r ( H 0 ) = C 00 P ( D 0 ∣ H 0 ) + C 10 P ( D 1 ∣ H 0 ) r ( H 1 ) = C 01 P ( D 0 ∣ H 1 ) + C 11 P ( D 1 ∣ H 1 ) P ( D 0 ∣ H 0 ) = 1 − P ( D 1 ∣ H 0 ) P ( D 0 ∣ H 1 ) = 1 − P ( D 1 ∣ H 1 ) \begin{cases} r(H_0)=C_{00}P(D_0|H_0)+C_{10}P(D_1|H_0)\\ r(H_1)=C_{01}P(D_0|H_1)+C_{11}P(D_1|H_1)\\ P(D_0|H_0)=1-P(D_1|H_0)\\ P(D_0|H_1)=1-P(D_1|H_1) \end{cases} r(H0)=C00P(D0H0)+C10P(D1H0)r(H1)=C01P(D0H1)+C11P(D1H1)P(D0H0)=1P(D1H0)P(D0H1)=1P(D1H1) 化简可得一个巨长的公式: R = P ( H 0 ) C 00 + P ( H 1 ) C 01 + P ( H 0 ) ( C 10 − C 00 ) P ( D 1 ∣ H 0 ) − P ( H 1 ) ( C 01 − C 11 ) P ( D 1 ∣ H 1 ) R=P(H_0)C_{00}+P(H_1)C_{01}+P(H_0)(C_{10}-C_{00})P(D_1|H_0)-P(H_1)(C_{01}-C_{11})P(D_1|H_1) R=P(H0)C00+P(H1)C01+P(H0)(C10C00)P(D1H0)P(H1)(C01C11)P(D1H1) 我们寻求一种对样本空间的划分,使得 R R R最小, R m i n = R B R_{min}=R_B Rmin=RB,这个判决准则即成为贝叶斯准则(Bayes
criterion) 在先验概率已知的情况下,巨长公式的前两项为常数,我们现在讨论后两项。 诶!我们给出下面两个公式 P ( D 1 ∣ H 0 ) = ∫ R 1 p ( x ∣ H 0 ) d x P ( D 1 ∣ H 1 ) = ∫ R 1 p ( x ∣ H 1 ) d x P(D_1|H_0)=\int_{R_1}p(\mathbf x|H_0)d_\mathbf x\\ P(D_1|H_1)=\int_{R_1}p(\mathbf x|H_1)d_\mathbf x P(D1H0)=R1p(xH0)dxP(D1H1)=R1p(xH1)dx 第一眼看到会一脸懵逼。
在这里插入图片描述
实际上 R 1 R_1 R1就是判决为 D 1 D_1 D1的输入空间。(思考:和判决空间的区别在哪) 我们将上面两个狮子带入 R R R中,则有: R = P ( H 0 ) C 00 + P ( H 1 ) C 01 + ∫ R 1 P ( H 0 ) ( C 10 − C 00 ) p ( x ∣ H 0 ) d x − ∫ R 1 P ( H 1 ) ( C 01 − C 11 ) p ( x ∣ H 1 ) d x \begin{aligned} R=&P(H_0)C_{00}+P(H_1)C_{01}\\ +&\int_{R_1}P(H_0)(C_{10}-C_{00})p(\mathbf x|H_0)d_\mathbf x\\ -&\int_{R_1}P(H_1)(C_{01}-C_{11})p(\mathbf x|H_1)d_\mathbf x \end{aligned} R=+P(H0)C00+P(H1)C01R1P(H0)(C10C00)p(xH0)dxR1P(H1)(C01C11)p(xH1)dx 考虑到要让积分最小,就需要取 R 1 R_1 R1为使积分项为负的区域的并集:
在这里插入图片描述
所以我们有 P ( H 0 ) ( C 10 − C 00 ) p ( x ∣ H 0 ) − P ( H 1 ) ( C 01 − C 11 ) p ( x ∣ H 1 ) ≤ 0 P(H_0)(C_{10}-C_{00})p(\mathbf x|H_0)-P(H_1)(C_{01}-C_{11})p(\mathbf x|H_1)\leq 0 P(H0)(C10C00)p(xH0)P(H1)(C01C11)p(xH1)0
经过化简和推论,我们发现和思路一的结果一致!

Λ ( x ) = △ P ( x ∣ H 1 ) P ( x ∣ H 0 ) > D 0 ≤ D 1 P ( H 0 ) ( C 10 − C 00 ) P ( H 1 ) ( C 01 − C 11 ) = △ Λ 0 \Lambda(\mathbf x)\overset{\triangle}{=}\frac{P(\mathbf x|H_1)}{P(\mathbf x|H_0)}^{\overset{D_1}{\leq}}_{\underset{D_0}{>}}\frac{P(H_0)(C_{10}-C_{00})}{P(H_1)(C_{01}-C_{11})}\overset{\triangle}{=}\Lambda_0 Λ(x)=P(xH0)P(xH1)D0>D1P(H1)(C01C11)P(H0)(C10C00)=Λ0
即Bayes准则,使总的平均风险最小化
其物理概念为:在这里插入图片描述

两种错误概率

在这里插入图片描述
我们有两类错误概率,虚警概率( P ( D 1 ∣ H 0 ) P(D_1|H_0) P(D1H0))和漏警概率( P ( D 0 ∣ H 1 ) P(D_0|H_1) P(D0H1)

  1. 虚警概率(Probability of False Alarm)
    雷达探测系统中称为虚警概率 P f P_f Pf,通信系统中表征发送0,接收判决为1的错误概率。
  2. 漏警概率(Probability of Miss Detection)
    雷达探测系统中称为虚警概率 P m P_m Pm,通信系统中表征发送1,接收判决为0的错误概率。

讲义上有个很复杂的例子,不过很好。

最小错误概率与最大后验准则(MAP)

在已知条件下:

  • 先验概率: P ( H 1 ) , P ( H 0 ) P(H_1),P(H_0) P(H1)P(H0)
  • 正确判决的代价为0,错误判决的代价为1

诶,对了,MAP也就是正确判决的代价为0,错误判决的代价为1的贝叶斯准则!
Λ ( x ) = △ P ( x ∣ H 1 ) P ( x ∣ H 0 ) > D 0 ≤ D 1 1 − P ( H 1 ) P ( H 1 ) = △ Λ 0 \Lambda(\mathbf x)\overset{\triangle}{=}\frac{P(\mathbf x|H_1)}{P(\mathbf x|H_0)}^{\overset{D_1}{\leq}}_{\underset{D_0}{>}}\frac{1-P(H_1)}{P(H_1)}\overset{\triangle}{=}\Lambda_0 Λ(x)=P(xH0)P(xH1)D0>D1P(H1)1P(H1)=Λ0
注意了,这个判决似然比贯穿了整个课程,是核心。
在这里最小化Bayes风险变成了最小化平均错误概率,称为最小错误概率准则。(啥是平均错误概率,这两种有什么不同 )
在数字通信中,通常假设 P ( H 1 ) = P ( H 0 ) = 0.5 ,   Λ 0 = P ( H 0 ) / P ( H 1 ) P(H_1)=P(H_0)=0.5,\ \Lambda_0=P(H_0)/P(H_1) P(H1)=P(H0)=0.5, Λ0=P(H0)/P(H1)
所以有: Λ ( x ) = p ( x ∣ H 1 ) p ( x ∣ H 0 ) > D 0 ≤ D 1 1 = △ Λ 0 \Lambda(\textbf x)=\frac{p(\textbf x|H_1)}{p(\textbf x|H_0)}^{\overset{D_1}{\leq}}_{\underset{D_0}{>}}1\overset{\triangle}{=}\Lambda_0 Λ(x)=p(xH0)p(xH1)D0>D11=Λ0

总结

  1. 代价因子: C i j C_{ij} Cij:你只要判别了,就要负泽任的!
  2. 平均代价: r ( D i ∣ x ) r(D_i|\mathbf x) r(Dix): 每种判别付得泽任!
  3. 平均风险: R R R: 类似于总共负的泽任的‘期望’。
  • 5
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值