维数定理的证明

维数定理: d i m ( V 1 ) + d i m ( V 2 ) = d i m ( V 1 + V 2 ) + d i m ( V 1 ∩ V 2 ) dim(V_1)+dim(V_2)=dim(V_1+V_2)+dim(V_1\cap V_2) dim(V1)+dim(V2)=dim(V1+V2)+dim(V1V2)
我查了查网上,有好几种证明方法。

第一种证明方法

使用高中学过的数学归纳法
假设1:线性空间 V 2 V_2 V2的维数为0
显然 d i m ( V 1 ∩ V 2 ) = 0 dim(V_1\cap V_2)=0 dim(V1V2)=0,
因此 d i m ( V 1 ) + d i m ( V 2 ) = d i m ( V 1 + V 2 ) + d i m ( V 1 ∩ V 2 ) dim(V_1)+dim(V_2)=dim(V_1+V_2)+dim(V_1\cap V_2) dim(V1)+dim(V2)=dim(V1+V2)+dim(V1V2)
该等式左右两端均是 d i m ( V 1 ) dim(V_1) dim(V1)
假设2:当 V 2 V_2 V2的维数为 n n n时,定理成立。
在此假设下,我们把 V 2 V_2 V2看成是一组正交基张成的空间 s p a n { ϵ 1 , ϵ 2 , . . . , ϵ n } span\{ \epsilon_1, \epsilon_2,..., \epsilon_n \} span{ϵ1,ϵ2,...,ϵn},所以有
d i m ( V 1 ) + d i m ( s p a n { ϵ 1 , ϵ 2 , . . . , ϵ n } ) dim(V_1)+dim(span\{ \epsilon_1, \epsilon_2,..., \epsilon_n \}) dim(V1)+dim(span{ϵ1,ϵ2,...,ϵn})
= d i m ( V 1 + s p a n { ϵ 1 , ϵ 2 , . . . , ϵ n } ) + d i m ( V 1 ∩ s p a n { ϵ 1 , ϵ 2 , . . . , ϵ n } ) =dim(V_1+span\{ \epsilon_1, \epsilon_2,..., \epsilon_n \})+dim(V_1\cap span\{ \epsilon_1, \epsilon_2,..., \epsilon_n \}) =dim(V1+span{ϵ1,ϵ2,...,ϵn})+dim(V1span{ϵ1,ϵ2,...,ϵn})
我们现在证明,当集合 V 2 V_2 V2的维数为 n + 1 n+1 n+1时,定理成立
ϵ n + 1 ∈ V 1 \epsilon_{n+1}\in V_1 ϵn+1V1,则
V 1 + s p a n { ϵ 1 , ϵ 2 , . . . , ϵ n + 1 } V_1+span\{ \epsilon_1, \epsilon_2,..., \epsilon_{n+1} \} V1+span{ϵ1,ϵ2,...,ϵn+1}= V 1 + s p a n { ϵ 1 , ϵ 2 , . . . , ϵ n } V_1+span\{ \epsilon_1, \epsilon_2,..., \epsilon_{n} \} V1+span{ϵ1,ϵ2,...,ϵn},因为等式两端所能表示的向量的集合是一样的。
并且有 V 1 ∩ s p a n { ϵ 1 , ϵ 2 , . . . , ϵ n + 1 } = V 1 ∩ s p a n { ϵ 1 , ϵ 2 , . . . , ϵ n } + s p a n { ϵ n + 1 } V_1\cap span\{ \epsilon_1, \epsilon_2,..., \epsilon_{n+1} \}=V_1\cap span\{ \epsilon_1, \epsilon_2,..., \epsilon_{n} \}+span\{\epsilon_{n+1}\} V1span{ϵ1,ϵ2,...,ϵn+1}=V1span{ϵ1,ϵ2,...,ϵn}+span{ϵn+1}
代入维数定理,成立。
ϵ n + 1 ∉ V 1 \epsilon_{n+1}\notin V_1 ϵn+1/V1,则
V 1 + s p a n { ϵ 1 , ϵ 2 , . . . , ϵ n + 1 } V_1+span\{ \epsilon_1, \epsilon_2,..., \epsilon_{n+1} \} V1+span{ϵ1,ϵ2,...,ϵn+1}= V 1 + s p a n { ϵ 1 , ϵ 2 , . . . , ϵ n } + s p a n { ϵ n + 1 } V_1+span\{ \epsilon_1, \epsilon_2,..., \epsilon_{n} \}+span\{\epsilon_{n+1}\} V1+span{ϵ1,ϵ2,...,ϵn}+span{ϵn+1},因为等式两端所能表示的向量的集合是一样的。
并且有 V 1 ∩ s p a n { ϵ 1 , ϵ 2 , . . . , ϵ n + 1 } = V 1 ∩ s p a n { ϵ 1 , ϵ 2 , . . . , ϵ n } V_1\cap span\{ \epsilon_1, \epsilon_2,..., \epsilon_{n+1} \}=V_1\cap span\{ \epsilon_1, \epsilon_2,..., \epsilon_{n} \} V1span{ϵ1,ϵ2,...,ϵn+1}=V1span{ϵ1,ϵ2,...,ϵn}
代入维数定理,也成立。
综上维数定理成立。
(妈的,高考的时候用数学归纳法必须一步步写清楚,少写一个点扣5分!)

第二种证明方法

待更

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值