小结:数论四大定理(威尔逊定理+欧拉定理+中国剩余定理+费马小定理)

26 篇文章 0 订阅
10 篇文章 0 订阅
前置知识:

模运算消去律:ac ≡ bc (mod p) → a ≡ b (mod p/gcd(c,p) )

威尔逊定理:

  • 当且仅当p为素数时,( p -1 )! ≡ -1 ( mod p )

  • 当且仅当p为素数时,( p -1 )! ≡ p-1 ( mod p )

  • 若p为质数,则p能被(p-1)!+1整除

  • 当且仅当p为素数时,p∣(p−1)!+1

证明:https://brilliant.org/wiki/wilsons-theorem
https://www.jianshu.com/p/ad5bb5b8fa7d


欧拉定理:

若正整数a和n互质,则 aφ(n) ≡ 1 (mod n)
若a,p互素, a φ ( p ) a^{φ( p)} aφ(p)≡1 (mod p) → a* a φ ( p ) − 1 a^{φ( p)-1} aφ(p)1 ≡ 1 (mod p)
因此 a φ ( p ) − 1 a^{φ( p)-1} aφ(p)1 为a mod p意义下的逆元

证明:https://brilliant.org/wiki/eulers-theorem/


中国剩余定理:

设 k 组数 (ai, ni), 其中 ni两两互素,要找到最小的正整数x,
满足方程组 x≡ai(mod ni)(i=1,2…k)

◼ 算法步骤:
◼ 令 n=n1n2…nk, mi=n/ni
◼ 显然 gcd(mi,ni)=1,用扩展欧几里德算法计算出 xi 满足mixi≡1(mod ni)
◼ 方程组的解 x = (a1x1m1+a2x2m2+…+akxkmk) mod n
◼ 方程组的任意两个解 模n同余,因此x就是最小的解。


费马小定理:

  • 对任意a和任意质数p,有ap ≡ a(mod p)
  • 对任意a和任意质数p,当a与p互质时,有ap−1≡1(mod p)
  • 若p能被a整除,则ap−1≡0(mod p)

证:因为 φ( p) = p-1,代入欧拉定理即证

若p为素数,ap-1≡1 (mod p) → a*ap-2 ≡ 1 (mod p)
因此 ap-2 为a mod p意义下的逆元


  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值