集成学习之梯度提升树(GBDT)原理总结

一、GBDT概述

    GBDT也是集成学习Boosting中的一种算法,但是却和传统的Adaboost有很大的不同。Adaboost 是利用前一轮迭代弱学习器的误差率来更新训练集的权重,这样一轮轮的迭代下去。GBDT也是迭代,但GBDT每一次的计算是都为了减少上一次的残差,进而在残差减少(负梯度)的方向上建立一个新的模型,其弱学习器限定了只能使用CART回归树模型,同时迭代思路和Adaboost也有所不同。

    1.1、下面看个年龄预测的例子。

    简单起见,假定训练集只有4个人:A,B,C,D,他们的年龄分别是14,16,24,26。其中A、B分别是高一和高三学生;C,D分别是应届毕业生和工作两年的员工。

    现在我们使用GBDT来做这件事,由于数据太少,我们限定叶子节点最多有两个,即每棵树都只有一个分枝,并且限定只学两棵树。

    我们会得到如下图所示结果:
在这里插入图片描述

    在第一棵树分枝和图1一样,由于A,B年龄较为相近,C,D年龄较为相近,他们被分为左右两拨,每拨用平均年龄作为预测值。

  • 此时计算残差(残差的意思就是:A的实际值 - A的预测值 = A的残差),所以A的残差就是实际值14 - 预测值15 = 残差值-1。
  • 注意,A的预测值是指前面所有树累加的和,这里前面只有一棵树所以直接是15,如果还有树则需要都累加起来作为A的预测值。

    残差在数理统计中是指实际观察值与估计值(拟合值)之间的差。“残差”蕴含了有关模型基本假设的重要信息。如果回归模型正确的话, 我们可以将残差看作误差的观测值,进而得到A,B,C,D的残差分别为-1,1,-1,1。

    然后拿它们的残差代替A B C D的原值-1、1、-1、1,到第二棵树去学习,第二棵树只有两个值1和-1,直接分成两个节点,即A和C分在左边,B和D分在右边,经过计算(比如A,实际值-1 - 预测值-1 = 残差0,比如C,实际值-1 - 预测值-1 = 0),此时所有人的残差都是0。

    残差值都为0,相当于第二棵树的预测值和它们的实际值相等,则只需把第二棵树的结论累加到第一棵树上就能得到真实年龄了,即每个人都得到了真实的预测值。

    换句话说,现在A,B,C,D的预测值都和真实年龄一致了。

    A: 14岁高一学生,购物较少,经常问学长问题,预测年龄A = 15 – 1 = 14

    B: 16岁高三学生,购物较少,经常被学弟问问题,预测年龄B = 15 + 1 = 16

    C: 24岁应届毕业生,购物较多,经常问师兄问题,预测年龄C = 25 – 1 = 24

    D: 26岁工作两年员工,购物较多,经常被师弟问问题,预测年龄D = 25 + 1 = 26

二、GBDT的负梯度拟合

    第t轮的第i个样本的损失函数的负梯度表示为
在这里插入图片描述
    利用 ( x i , r t i ) ( i = 1 , 2 , . . m ) (x_i,r_{ti})(i=1,2,..m) (xi,rti)(i=1,2,..m),我们可以拟合一颗CART回归树,得到了第t颗回归树,其对应的叶节点区域 R t j , j = 1 , 2 , . . . , J R_{tj},j=1,2,...,J Rtj,j=1,2,...,J。其中 J J J 为叶子节点的个数。

    针对每一个叶子节点里的样本,我们求出使损失函数最小,也就是拟合叶子节点最好的的输出值 c t j c_{tj} ctj 如下:
在这里插入图片描述
    这样我们就得到了本轮的决策树拟合函数如下:
在这里插入图片描述
    从而本轮最终得到的强学习器的表达式如下:
在这里插入图片描述
    通过损失函数的负梯度来拟合,我们找到了一种通用的拟合损失误差的办法,这样无轮是分类问题还是回归问题,我们通过其损失函数的负梯度的拟合,就可以用GBDT来解决我们的分类回归问题。区别仅仅在于损失函数不同导致的负梯度不同而已。

三、GBDT回归算法

    输入是训练集样本 T = ( x , y 1 ) , ( x 2 , y 2 ) , . . . , ( x m , y m ) T={(x,y_1),(x_2,y_2),...,(x_m,y_m)} T=(x,y1),(x2,y2),...,(xm,ym), 最大迭代次数T, 损失函数L。

    输出是强学习器f(x)

  1. 初始化弱学习器
    在这里插入图片描述
  2. 对迭代轮数t=1,2,…T有:
    2.1 对样本i=1,2,…m,计算负梯度
    在这里插入图片描述
    2.2 利用 ( x i , r t i ) ( i = 1 , 2 , . . m ) (x_i,r_{ti})(i=1,2,..m) (xi,rti)(i=1,2,..m), 拟合一颗CART回归树,得到第t颗回归树,其对应的叶子节点区域为 R t j , j = 1 , 2 , . . . , J R_{tj},j=1,2,...,J Rtj,j=1,2,...,J。其中 J J J 为回归树t的叶子节点的个数。
    2.3 对叶子区域 j = 1 , 2 , . . . , J j =1,2,...,J j=1,2,...,J,计算最佳拟合值
    在这里插入图片描述
    2.4 更新强学习器
    在这里插入图片描述
  3. 得到强学习器f(x)的表达式
    在这里插入图片描述

四、GBDT分类算法

    这里我们再看看GBDT分类算法,GBDT的分类算法从思想上和GBDT的回归算法没有区别,但是由于样本输出不是连续的值,而是离散的类别,导致我们无法直接从输出类别去拟合类别输出的误差。

    为了解决这个问题,主要有两个方法,一个是用指数损失函数,此时GBDT退化为Adaboost算法。另一种方法是用类似于逻辑回归的对数似然损失函数的方法。也就是说,我们用的是类别的预测概率值和真实概率值的差来拟合损失。本文仅讨论用对数似然损失函数的GBDT分类。而对于对数似然损失函数,我们又有二元分类和多元分类的区别。

4.1、二元GBDT分类算法

    对于二元GBDT,如果用类似于逻辑回归的对数似然损失函数,则损失函数为:
在这里插入图片描述
    其中 y∈{−1,+1}。则此时的负梯度误差为
在这里插入图片描述
    对于生成的决策树,我们各个叶子节点的最佳负梯度拟合值为
在这里插入图片描述
    由于上式比较难优化,我们一般使用近似值代替
在这里插入图片描述

    除了负梯度计算和叶子节点的最佳负梯度拟合的线性搜索,二元GBDT分类和GBDT回归算法过程相同。

五、GBDT常用损失函数

5.1、对于分类算法,其损失函数一般有对数损失函数和指数损失函数两种:
  1. 如果是指数损失函数,则损失函数表达式为
    L ( y , f ( x ) ) = e x p ( − y f ( x ) ) L(y,f(x))=exp(-yf(x)) L(y,f(x))=exp(yf(x))
  2. 如果是对数损失函数,分为
    二元分类: L ( y , f ( x ) ) = l o g ( 1 + e x p ( − y f ( x ) ) ) L(y,f(x))=log(1+exp(−yf(x))) L(y,f(x))=log(1+exp(yf(x)))
    多元分类: L ( y , f ( x ) ) = − ∑ k = 1 K y k log ⁡ p k ( x ) L(y,f(x))=−\sum_{k=1}^Ky_k\log p_k(x) L(y,f(x))=k=1Kyklogpk(x)
5.2、对于回归算法,常用损失函数有如下4种:
  1. 均方差,这个是最常见的回归损失函数了 L ( y , f ( x ) ) = ( y − f ( x ) ) 2 L(y,f(x))=(y−f(x))^2 L(y,f(x))=(yf(x))2

  2. 绝对损失,这个损失函数也很常见 L ( y , f ( x ) ) = ∣ y − f ( x ) ∣ L(y,f(x))=|y−f(x)| L(y,f(x))=yf(x)
    对应负梯度误差为:
    s i g n ( y i − f ( x i ) ) sign(y_i−f(x_i)) sign(yif(xi))

  3. Huber损失,它是均方差和绝对损失的折衷产物,对于远离中心的异常点,采用绝对损失,而中心附近的点采用均方差。这个界限一般用分位数点度量。损失函数如下:
    在这里插入图片描述
        对应的负梯度误差为:
    在这里插入图片描述

  4. 分位数损失。它对应的是分位数回归的损失函数,表达式为
    在这里插入图片描述
        其中θ为分位数,需要我们在回归前指定。对应的负梯度误差为:
    在这里插入图片描述
        对于Huber损失和分位数损失,主要用于健壮回归,也就是减少异常点对损失函数的影响。

六、GBDT小结

    GBDT主要的优点有:

  1. 可以灵活处理各种类型的数据,包括连续值和离散值。
  2. 在相对少的调参时间情况下,预测的准确率也可以比较高。这个是相对SVM来说的。
  3. 使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。

     GBDT的主要缺点有:

  • 由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。

    以上就是GBDT的原理总结。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值