梯度提升树(GBDT)原理小结

本博客中使用到的完整代码请移步至: 我的github:https://github.com/qingyujean/Magic-NLPer,求赞求星求鼓励~~~

集成学习系列文章:

集成学习原理小结(AdaBoost & lightGBM demo)
梯度提升树(GBDT)原理小结
XGBoost使用
随机森林(Random Forest)原理小结


接着之前的 决策树 章节和 随机森林 章节,接下来还会继续介绍一些基于决策树的,具有代表性的集成模型,如GBDT,XGBoost以及lightGBM等。

本章主要介绍 提升树(Boosting Tree)梯度提升(Gradient Boosting)树(简写GBDT) ,GBDT是boosting集成模型的扩展变体,所以前面会简要介绍一些关于boosting的内容,后面会有专门的 “集成学习” 的章节来重点介绍boosting相关内容。

1. boosting

Boosting是一族可将弱学习器提升为强学习器的算法,其著名代表是AdaBoost。这里不会具体介绍AdaBoost的细节,会在集成学习里重点说明。

Boosting算法要求基学习器能对特定的数据分布进行学习,这可通过”重赋权法“(re-weighting)实施;对于无法接受带权样本的基学习算法,则可通过”重采样法“(re-sampling)来处理。

2. 提升树(boosting tree)

2.1 提升树模型

提升方法实际采用加法模型(即基函数的线性组合)前向分步算法。而提升树是以决策树(二叉分类树或二叉回归树)为基函数的提升方法。提升树模型可表示为:
f M ( x ) = ∑ m = 1 M T ( x ; Θ m ) f_M(x)=\sum\limits_{m=1}^MT(x;\Theta_m) fM(x)=m=1MT(x;Θm)
其中 T ( x ; Θ m ) T(x;\Theta_m) T(x;Θm)表示决策树, Θ m \Theta_m Θm表示决策树的参数, M M M 表示决策树的个数。

2.2 提升树算法:前向分步算法

f m ( x ) = f m − 1 ( x ) + T ( x ; Θ m ) f_m(x)=f_{m-1}(x)+T(x;\Theta_m) fm(x)=fm1(x)+T(x;Θm)
其中初始提升树 f 0 ( x ) = 0 f_0(x)=0 f0(x)=0 f m − 1 ( x ) f_{m-1}(x) fm1(x)为当前模型,通过经验风险极小化(模型f(X)关于训练数据集的平均损失成为 经验风险 )确定下一棵决策树的参数 Θ m \Theta_m Θm
Θ ^ m = arg ⁡ min ⁡ Θ m ∑ i = 1 N L ( y i ,    f m ( x i ) )        = arg ⁡ min ⁡ Θ m ∑ i = 1 N L ( y i ,    f m − 1 ( x i ) + T ( x i ; Θ m ) ) \begin{array}{ll} &\hat{\Theta}_{m}=\arg\min_{\Theta_m} \sum\limits_{i=1}^NL(y_i,\; f_m(x_i)) \\ &\quad\;\;\;=\arg\min_{\Theta_m} \sum\limits_{i=1}^NL(y_i,\; f_{m-1}(x_i)+T(x_i;\Theta_m))\end{array} Θ^m=argminΘmi=1NL(yi,fm(xi))=argminΘmi=1NL(yi,fm1(xi)+T(xi;Θm))
针对不同问题的提升树学习算法,其主要区别在于使用的损失函数不同:

  • 回归问题(平方误差损失函数)
  • 分类问题(指数损失函数)
  • 一般决策问题(一般损失函数)

2.3 分类问题的提升树算法

对于二分类问题,提升树算法只需将AdaBoost算法中的基本分类器限制二分类决策树即可。下面直接贴出李航蓝皮书的Adaboost的算法描述,只需知道算法中基学习器 G m ( x ) G_m(x) Gm(x)限定为二分类决策树即为提升树算法:

AdaBoost算法
AdaBoost算法

关于AdaBoost算法的一些说明,将在集成学习的提升方法章节细讲。

这里提一点,为什么说分类问题的损失函数是指数损失函数,首先看看什么是指数损失函数:

L ( y , f ( x ) ) = e x p [ − y f ( x ) ] L(y,f(x))=exp[-yf(x)] L(y,f(x))=exp[yf(x)]

关于提升方法的分类问题的损失函数是指数函数的证明,在李航蓝皮书第2版p164页有详细证明,后面在讲集成学习的提升方法时会细说,这里主要是针对与决策树相关集成方法的简单介绍,就先不说了。

2.4 回归问题的提升树算法

已知训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\} T={(x1,y1),(x2,y2),,(xN,yN)},其中 x i ∈ X ⊆ R n , y i ∈ Y = { − 1 , + 1 } x_{i} \in \mathcal{X} \subseteq \mathbf{R}^{n}, y_{i} \in \mathcal{Y} =\left\{-1,+1\right\} xiXRn,yiY={1,+1}。回归问题的提升树可表示为:
T ( x ; Θ ) = ∑ j = 1 J c j I ( x ∈ R j ) T(x;\Theta)=\sum\limits_{j=1}^J c_jI(x\in R_j) T(x;Θ)=j=1JcjI(xRj)
其中 R j R_j Rj表示将输入空间 X \mathcal X X划分为 J J J个互不相交的区域,并且在每个区域上确定的输出常量为 c j c_j cj,参数 Θ = { ( R 1 , c 1 ) , ( R 2 , c 2 ) , . . . , ( R J , c J ) } \Theta=\{(R_1,c_1),(R_2,c_2),...,(R_J,c_J)\} Θ={(R1,c1),(R2,c2),...,(RJ,cJ)}表示树的区域划分和各区域上的常数。 J J J回归树的复杂度即叶子结点个数

按照前向分步算法,当给定当前模型 f m − 1 ( x ) f_{m-1}(x) fm1(x)时,则第m步需求解:
Θ ^ m = arg ⁡ min ⁡ Θ m ∑ i = 1 N L ( y i ,    f m ( x i ) )        = arg ⁡ min ⁡ Θ m ∑ i = 1 N L ( y i ,    f m − 1 ( x i ) + T ( x i ; Θ m ) ) \begin{array}{ll} &\hat{\Theta}_{m}=\arg\min_{\Theta_m} \sum\limits_{i=1}^NL(y_i,\; f_m(x_i)) \\ &\quad\;\;\;=\arg\min_{\Theta_m} \sum\limits_{i=1}^NL(y_i,\; f_{m-1}(x_i)+T(x_i;\Theta_m))\end{array} Θ^m=argminΘmi=1NL(yi,fm(xi))=argminΘmi=1NL(yi,fm1(xi)+T(xi;Θm))
而回归树采用“平方误差损失函数“,则 L ( y , f ( x ) ) = ( y − f ( x ) ) 2 L(y,f(x))=(y-f(x))^2 L(y,f(x))=(yf(x))2,那么损失变为:
L ( y , f m ( x ) ) = L ( y , f m − 1 ( x ) + T ( x i ; Θ m ) )    = [ y − ( f m − 1 ( x ) + T ( x i ; Θ m ) ) ] 2    = [ y − f m − 1 ( x ) − T ( x i ; Θ m ) ] 2 令 r = y − f m − 1 ( x ) 则    = [ r − T ( x i ; Θ m ) ] 2 \begin{array}{ll} & L(y,f_m(x))=L(y,f_{m-1}(x)+T(x_i;\Theta_m)) \\ & \qquad\qquad\quad\; =[y-(f_{m-1}(x)+T(x_i;\Theta_m))]^2 \\ & \qquad\qquad\quad\;=[y-f_{m-1}(x)-T(x_i;\Theta_m)]^2\quad 令r=y-f_{m-1}(x)则 \\ & \qquad\qquad\quad\;=[r-T(x_i;\Theta_m)]^2\end{array} L(y,fm(x))=L(y,fm1(x)+T(xi;Θm))=[y(fm1(x)+T(xi;Θm))]2=[yfm1(x)T(xi;Θm)]2r=yfm1(x)=[rT(xi;Θm)]2
其中 r = y − f m − 1 ( x ) r=y-f_{m-1}(x) r=yfm1(x)是当前拟合数据的 残差(residual) ,所以 回归问题的提升树算法,就是在简单的拟合当前模型的残差! 算法描述如下:

回归问题的提升树算法

3. 梯度提升树(gradient boosting)

GBDT针对一般损失函数提出,不再仅仅针对指数损失函数或者平方损失函数,GBDT算法更通用。

GBDT的基学习器限定为使用CART回归树

3.1 分类问题的梯度提升树算法

分类问题如果使用指数损失函数,此时GBDT退化为AdaBoost算法;如果使用对数似然损失函数,使用类别预测的概率值与真实概率值的差值来拟合损失,此时算法与GBDT回归算法过程基本相同,除了因损失函数不同而引起的负梯度(一阶泰勒展开)计算以及各叶子结点的最佳残差拟合值的计算不同

这部分可参考如下2篇博客:

深入理解GBDT二分类算法以及刘建平老师的梯度提升树(GBDT)原理小结

3.2 回归问题的梯度提升树算法

对于回归问题,在前面一节中的普通提升树中,使用 r = y − f m − 1 ( x ) r=y-f_{m-1}(x) r=yfm1(x)来作为当前拟合数据的残差(residual),而本方法中,则使用 损失函数的负梯度(一阶泰勒展开)在当前模型的值,作为残差的近似值 ,即:
r = − [ ∂ L ( y , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f m − 1 ( x ) r=-\big[\frac{\partial L(y,f(x_i))}{\partial f(x_i)}\big]_{f(x)=f_{m-1}(x)} r=[f(xi)L(y,f(xi))]f(x)=fm1(x)
算法描述如下:

回归问题的GBDT

关于提升方法(Boosting,代表算法AdaBoost)提升树(BDT)梯度提升树(GDBT)的一点总结:

  • Adaboost(以分类问题为例)是去对训练样本reweight,使得后面的模型更关注那些被误分类的样本,每次选择在当前样本权重分布下分类误差率最小的 G m ( x ) G_m(x) Gm(x),得到 f m ( x ) = f m − 1 ( x ) + α G m ( x ) f_m(x)=f_{m-1}(x)+\alpha G_m(x) fm(x)=fm1(x)+αGm(x)
  • 而BDT(以回归问题为例)是每次与拟合当前模型与y值的残差,逐步缩小这个差距(例如“平方损失”
  • GDBT(通用)就是使用损失函数的负梯度(一阶泰勒展开)在当前模型的值来近似表示残差,然后在每一步中去拟合这个残差(更通用不仅针对分类的指数损失函数,回归的平方损失函数,还是一般的决策函数)

4. 代码示例

使用sklearn GBDT解决分类问题。数据集:白酒数据,共有13个特征,3个类别,在下面仅使用2个类别和2个特征作为示例。

先加载数据:

# Wine dataset and rank the 13 features by their respective importance measures
df_wine = pd.read_csv(data_dir+'wine.data',
                      header=None,
                      names=['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium',
                               'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity',
                               'Hue', 'OD280/OD315 of diluted wines', 'Proline'])
print('Class labels', np.unique(df_wine['Class label'])) # 一共有3个类

df_wine = df_wine[df_wine['Class label']!=1] # 去掉一个类

y = df_wine['Class label'].values
X = df_wine[['Alcohol', 'OD280/OD315 of diluted wines']].values

输出:

Class labels [1 2 3]

选取2个特征,去除一个类别,划分数据集:

le = LabelEncoder()
y = le.fit_transform(y)

print('Class labels', np.unique(y))
print('numbers of features:', X.shape[1])

# 划分训练集测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1, stratify=y)
X_train.shape

输出:

Class labels [0 1]
numbers of features: 2
56
(95, 2)

先使用一颗决策树分类,作为GBDT的对比参照:

# 先使用决策树做分类,作为GBDT的对比参照
tree = DecisionTreeClassifier(criterion='entropy',
                              random_state=1,
                              max_depth=1)
tree = tree.fit(X_train, y_train)
y_train_pred = tree.predict(X_train)
y_test_pred = tree.predict(X_test)
tree_train = accuracy_score(y_train, y_train_pred)
tree_test = accuracy_score(y_test, y_test_pred)
print('Decision tree train/test accuracies %.3f/%.3f' % (tree_train, tree_test))

输出:

Decision tree train/test accuracies 0.916/0.875

再使用GBDT分类:

# 使用GBDT分类
gbm = GradientBoostingClassifier(n_estimators=500,
                                 learning_rate=0.1,
                                 random_state=1,
                                 criterion='friedman_mse',
                                 max_depth=1,
                                 loss='deviance')
# 对于分类问题,损失函数默认是"deviance"对数似然损失函数,如果是"exponential"则表示指数损失函数
gbm = gbm.fit(X_train, y_train)
y_train_pred = gbm.predict(X_train)
y_test_pred = gbm.predict(X_test)
gbm_train = accuracy_score(y_train, y_train_pred)
gbm_test = accuracy_score(y_test, y_test_pred)
print('GBDT train/test accuracies %.3f/%.3f' % (gbm_train, gbm_test))

输出:

GBDT train/test accuracies 1.000/0.917

绘制决策边界,对比决策树和GBDT的分类效果:

# 绘制决策边界
def plot_decision_regions(X, y, classifier_list, classifier_names):
    x_min = X[:, 0].min() - 1
    x_max = X[:, 0].max() + 1
    y_min = X[:, 1].min() - 1
    y_max = X[:, 1].max() + 1

    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
    np.arange(y_min, y_max, 0.1))

    f, axarr = plt.subplots(1, 2, sharex='col', sharey='row', figsize=(8, 3))

    for idx, clf, tt in zip([0, 1],classifier_list,classifier_names):
        clf.fit(X, y)
        Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        axarr[idx].contourf(xx, yy, Z, alpha=0.3)
        axarr[idx].scatter(X[y==0, 0], X[y==0, 1], c='blue', marker='^')
        axarr[idx].scatter(X[y==1, 0], X[y==1, 1], c='red', marker='o')
        axarr[idx].set_title(tt)
        axarr[0].set_ylabel('Alcohol', fontsize=12)

    plt.text(10.2, -0.5, s='OD280/OD315 of diluted wines', ha='center', va='center', fontsize=12)
    plt.show()

plot_decision_regions(X_train, y_train, [tree, gbm], ['Decision Tree', 'GBDT'])

输出:
分类决策边界

5. 模型评价

优点:

  • 能灵活处理各种类型的数据,包括连续值和离散值。
  • 在相对少的调参时间情况下,预测的准确率也可以比较高。这个是相对SVM来说的。
  • 用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。

缺点:

  • 串行学习的特点,致使其难以并行训练。不过可以通过自采样的SGBT来达到部分并行

完整代码地址

完整代码请移步至: 我的github:https://github.com/qingyujean/Magic-NLPer,求赞求星求鼓励~~~

最后:如果本文中出现任何错误,请您一定要帮忙指正,感激~

参考

[1] 统计学习方法(第2版) 李航
[2] 梯度提升树(GBDT)原理小结   刘建平
[3] 机器学习(西瓜书) 周志华

  • 6
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值